When does the F -signature exist?

Ian M. Aberbach[1]; Florian Enescu[2]

  • [1] Department of Mathematics, University of Missouri, Columbia, MO 65211.
  • [2] Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303 and The Institute of Mathematics of the Romanian Academy (Romania).

Annales de la faculté des sciences de Toulouse Mathématiques (2006)

  • Volume: 15, Issue: 2, page 195-201
  • ISSN: 0240-2963

Abstract

top
We show that the F -signature of an F -finite local ring R of characteristic p > 0 exists when R is either the localization of an N -graded ring at its irrelevant ideal or Q -Gorenstein on its punctured spectrum. This extends results by Huneke, Leuschke, Yao and Singh and proves the existence of the F -signature in the cases where weak F -regularity is known to be equivalent to strong F -regularity.

How to cite

top

Aberbach, Ian M., and Enescu, Florian. "When does the $F$-signature exist?." Annales de la faculté des sciences de Toulouse Mathématiques 15.2 (2006): 195-201. <http://eudml.org/doc/10043>.

@article{Aberbach2006,
abstract = {We show that the $F$-signature of an $F$-finite local ring $R$ of characteristic $p &gt;0$ exists when $R$ is either the localization of an $\mathbf\{N\}$-graded ring at its irrelevant ideal or $\mathbf\{Q\}$-Gorenstein on its punctured spectrum. This extends results by Huneke, Leuschke, Yao and Singh and proves the existence of the $F$-signature in the cases where weak $F$-regularity is known to be equivalent to strong $F$-regularity.},
affiliation = {Department of Mathematics, University of Missouri, Columbia, MO 65211.; Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303 and The Institute of Mathematics of the Romanian Academy (Romania).},
author = {Aberbach, Ian M., Enescu, Florian},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {F-signature; F-finite ring},
language = {eng},
number = {2},
pages = {195-201},
publisher = {Université Paul Sabatier, Toulouse},
title = {When does the $F$-signature exist?},
url = {http://eudml.org/doc/10043},
volume = {15},
year = {2006},
}

TY - JOUR
AU - Aberbach, Ian M.
AU - Enescu, Florian
TI - When does the $F$-signature exist?
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 2
SP - 195
EP - 201
AB - We show that the $F$-signature of an $F$-finite local ring $R$ of characteristic $p &gt;0$ exists when $R$ is either the localization of an $\mathbf{N}$-graded ring at its irrelevant ideal or $\mathbf{Q}$-Gorenstein on its punctured spectrum. This extends results by Huneke, Leuschke, Yao and Singh and proves the existence of the $F$-signature in the cases where weak $F$-regularity is known to be equivalent to strong $F$-regularity.
LA - eng
KW - F-signature; F-finite ring
UR - http://eudml.org/doc/10043
ER -

References

top
  1. I. M. Aberbach, Some conditions for the equivalence of weak and strong F -regularity, Comm. Alg. 30 (2002), 1635-1651 Zbl1070.13005MR1894033
  2. I. M Aberbach, F. Enescu, The structure of F -pure rings, Math. Zeit. Zbl1102.13001MR2180375
  3. I. M. Aberbach, G. Leuschke, The F -signature and strong F -regularity, Math. Res. Lett. 10 (2003), 51-56 Zbl1070.13006MR1960123
  4. W. Bruns, J. Herzog, Cohen-Macaulay Rings, (1993), Cambridge University Press, Cambridge Zbl0788.13005MR1251956
  5. M. Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), 463-488 Zbl0369.13005MR463152
  6. M. Hochster, C. Huneke, Tight closure and strong F -regularity, Mémoires de la Soc. Math. France (1989), 119-133 Zbl0699.13003MR1044348
  7. C. Huneke, G. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), 391-404 Zbl1007.13005MR1933863
  8. G. Lyubeznik, K.E. Smith, Strong and weak F -regularity are equivalent for graded rings, Amer. J. Math. 121 (1999), 1279-1290 Zbl0970.13003MR1719806
  9. A.K. Singh, The F -signature of an affine semigroup ring, J. Pure Appl. Algebra 196 (2005), 313-321 Zbl1080.13001MR2110527
  10. K.E. Smith, M. Van den Bergh, Simplicity of rings of differential operators in prime characteristic, Proc. London. Math. Soc. (3) 75 (1997), 32-62 Zbl0948.16019MR1444312
  11. Y. Yao, Modules with finite F -representation type, Jour. London Math. Soc. Zbl1108.13004MR2145728
  12. Y. Yao, Observations on the F -signature of local rings of characteristic p &gt; 0 , (2003) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.