Tight closure and strong F-regularity

Melvin Hochster; Craig Huneke

Mémoires de la Société Mathématique de France (1989)

  • Volume: 38, page 119-133
  • ISSN: 0249-633X

How to cite

top

Hochster, Melvin, and Huneke, Craig. "Tight closure and strong F-regularity." Mémoires de la Société Mathématique de France 38 (1989): 119-133. <http://eudml.org/doc/94877>.

@article{Hochster1989,
author = {Hochster, Melvin, Huneke, Craig},
journal = {Mémoires de la Société Mathématique de France},
keywords = {tight closure of an ideal; characteristic p; Frobenius endomorphism; strongly F-regular; Vanishing theorem; generalized Briançon-Skoda theorem},
language = {eng},
pages = {119-133},
publisher = {Société mathématique de France},
title = {Tight closure and strong F-regularity},
url = {http://eudml.org/doc/94877},
volume = {38},
year = {1989},
}

TY - JOUR
AU - Hochster, Melvin
AU - Huneke, Craig
TI - Tight closure and strong F-regularity
JO - Mémoires de la Société Mathématique de France
PY - 1989
PB - Société mathématique de France
VL - 38
SP - 119
EP - 133
LA - eng
KW - tight closure of an ideal; characteristic p; Frobenius endomorphism; strongly F-regular; Vanishing theorem; generalized Briançon-Skoda theorem
UR - http://eudml.org/doc/94877
ER -

References

top
  1. [B] J.-F. BOUTOT. Singularités rationnelles et quotients par les groupes réductifs. Invent. Math. 88 (1987) 65-68. Zbl0619.14029MR88a:14005
  2. [BrS] J. BRIANCON and H. SKODA. Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de Cn. C. R. Acad. Sci. Paris Sér. A 278 (1974) 949-951. Zbl0307.32007MR49 #5394
  3. [H1] M. HOCHSTER. Contracted ideals from integral extensions of regular rings. Nagoya Math. J. 51 (1972) 25-43. Zbl0245.13012MR50 #2149
  4. [H2] M. HOCHSTER. Topics in the homological theory of modules over commutative rings. C.B.M.S. Regional Conf. Ser. in Math. N° 24, A.M.S., Providence, R.I. 1975. Zbl0302.13003MR51 #8096
  5. [H3] M. HOCHSTER. Canonical elements in local cohomology modules and the direct summand conjecture. J. of Algebra 84 (1983) 503-553. Zbl0562.13012MR85j:13021
  6. [HH1] M. HOCHSTER and C. HUNEKE. Tightly closed ideals. Bull. Amer. Math. Soc., 18 (1988) 45-48. Zbl0674.13003MR89b:13003
  7. [HH2] M. HOCHSTER and C. HUNEKE. Tight closure, invariant theory, and the Briançon-Skoda theorem, in preparation. Zbl0701.13002
  8. [HR1] M. HOCHSTER and J.L. ROBERTS. Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Advances in Math. 13 (1974) 115-175. Zbl0289.14010MR50 #311
  9. [HR2] M. HOCHSTER and J.L. ROBERTS. The purity of the Frobenius and local cohomology. Advances in Math. 21 (1976) 117-172. Zbl0348.13007MR54 #5230
  10. [K] G. KEMPF. The Hochster-Roberts theorem of invariant theory. Michigan Math. J. 26 (1979) 19-32. Zbl0409.13004MR80g:14040
  11. [LS] J. LIPMAN and A. SATHAYE. Jacobian ideals and a theorem of Briançon-Skoda. Michigan Math. J. 28 (1981) 199-222. Zbl0438.13019MR83m:13001
  12. [LT] J. LIPMAN and B. TEISSIER. Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals. Michigan Math. J. 28 (1981) 97-1116. Zbl0464.13005MR82f:14004
  13. [PS] C. PESKINE and L. SZPIRO. Dimension projective finie et cohomologie locale. I.H.E.S. Publ. Math. 42 (1973) 323-395. Zbl0268.13008
  14. [W] K. WATANABE. Study of F-purity in dimension two, preprint, Tokai University, Hiratsuka, 259-12, Japan. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.