Tight closure and strong F-regularity
Mémoires de la Société Mathématique de France (1989)
- Volume: 38, page 119-133
- ISSN: 0249-633X
Access Full Article
topHow to cite
topReferences
top- [B] J.-F. BOUTOT. Singularités rationnelles et quotients par les groupes réductifs. Invent. Math. 88 (1987) 65-68. Zbl0619.14029MR88a:14005
- [BrS] J. BRIANCON and H. SKODA. Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de Cn. C. R. Acad. Sci. Paris Sér. A 278 (1974) 949-951. Zbl0307.32007MR49 #5394
- [H1] M. HOCHSTER. Contracted ideals from integral extensions of regular rings. Nagoya Math. J. 51 (1972) 25-43. Zbl0245.13012MR50 #2149
- [H2] M. HOCHSTER. Topics in the homological theory of modules over commutative rings. C.B.M.S. Regional Conf. Ser. in Math. N° 24, A.M.S., Providence, R.I. 1975. Zbl0302.13003MR51 #8096
- [H3] M. HOCHSTER. Canonical elements in local cohomology modules and the direct summand conjecture. J. of Algebra 84 (1983) 503-553. Zbl0562.13012MR85j:13021
- [HH1] M. HOCHSTER and C. HUNEKE. Tightly closed ideals. Bull. Amer. Math. Soc., 18 (1988) 45-48. Zbl0674.13003MR89b:13003
- [HH2] M. HOCHSTER and C. HUNEKE. Tight closure, invariant theory, and the Briançon-Skoda theorem, in preparation. Zbl0701.13002
- [HR1] M. HOCHSTER and J.L. ROBERTS. Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Advances in Math. 13 (1974) 115-175. Zbl0289.14010MR50 #311
- [HR2] M. HOCHSTER and J.L. ROBERTS. The purity of the Frobenius and local cohomology. Advances in Math. 21 (1976) 117-172. Zbl0348.13007MR54 #5230
- [K] G. KEMPF. The Hochster-Roberts theorem of invariant theory. Michigan Math. J. 26 (1979) 19-32. Zbl0409.13004MR80g:14040
- [LS] J. LIPMAN and A. SATHAYE. Jacobian ideals and a theorem of Briançon-Skoda. Michigan Math. J. 28 (1981) 199-222. Zbl0438.13019MR83m:13001
- [LT] J. LIPMAN and B. TEISSIER. Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals. Michigan Math. J. 28 (1981) 97-1116. Zbl0464.13005MR82f:14004
- [PS] C. PESKINE and L. SZPIRO. Dimension projective finie et cohomologie locale. I.H.E.S. Publ. Math. 42 (1973) 323-395. Zbl0268.13008
- [W] K. WATANABE. Study of F-purity in dimension two, preprint, Tokai University, Hiratsuka, 259-12, Japan.