Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets
Gerd Dethloff[1]; Tran Van Tan[1]
- [1] Université de Bretagne Occidentale, UFR Sciences et Techniques, Département de Mathématiques, 6, avenue Le Gorgeu, BP 452, 29275 Brest Cedex (France).
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 2, page 217-242
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDethloff, Gerd, and Tan, Tran Van. "Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets." Annales de la faculté des sciences de Toulouse Mathématiques 15.2 (2006): 217-242. <http://eudml.org/doc/10047>.
@article{Dethloff2006,
abstract = {In this paper, using techniques of value distribution theory, we give a uniqueness theorem for meromorphic mappings of $\{\mathbb\{C\}\}^\{m\}$ into $\{\mathbb\{C\}\}P^\{n\}$ with truncated multiplicities and “few" targets. We also give a theorem of linear degeneration for such maps with truncated multiplicities and moving targets.},
affiliation = {Université de Bretagne Occidentale, UFR Sciences et Techniques, Département de Mathématiques, 6, avenue Le Gorgeu, BP 452, 29275 Brest Cedex (France).; Université de Bretagne Occidentale, UFR Sciences et Techniques, Département de Mathématiques, 6, avenue Le Gorgeu, BP 452, 29275 Brest Cedex (France).},
author = {Dethloff, Gerd, Tan, Tran Van},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Nevanlinna theory; uniqueness theorem; moving target},
language = {eng},
number = {2},
pages = {217-242},
publisher = {Université Paul Sabatier, Toulouse},
title = {Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets},
url = {http://eudml.org/doc/10047},
volume = {15},
year = {2006},
}
TY - JOUR
AU - Dethloff, Gerd
AU - Tan, Tran Van
TI - Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2006
PB - Université Paul Sabatier, Toulouse
VL - 15
IS - 2
SP - 217
EP - 242
AB - In this paper, using techniques of value distribution theory, we give a uniqueness theorem for meromorphic mappings of ${\mathbb{C}}^{m}$ into ${\mathbb{C}}P^{n}$ with truncated multiplicities and “few" targets. We also give a theorem of linear degeneration for such maps with truncated multiplicities and moving targets.
LA - eng
KW - Nevanlinna theory; uniqueness theorem; moving target
UR - http://eudml.org/doc/10047
ER -
References
top- G. Dethloff, Tran Van Tan, Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets, (2004) Zbl1111.32016
- G. Dethloff, Tran Van Tan, An extension of uniqueness theorems for meromorphic mappings, (2004) Zbl1170.32004
- H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23 Zbl0313.32005MR393586
- H. Fujimoto, Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J. 152 (1998), 131-152 Zbl0937.32010MR1659377
- H. Fujimoto, Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J. 155 (1999), 161-188 Zbl0946.32008MR1711367
- S. Ji, Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math. 135 (1988), 323-348 Zbl0629.32022MR968616
- D. Q. Manh, Unique range sets for holomorphic curves, Acta Math. Vietnam 27 (2002), 343-348 Zbl1049.32021MR1979813
- R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta. Math. 48 (1926), 367-391 Zbl52.0323.03
- M. Ru, W. Stoll, The Second Main Theorem for moving targets, J. Geom. Anal. 1 (1991), 99-138 Zbl0732.30025MR1113373
- M. Ru, A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2002), 2701-2707 Zbl0977.32013MR1838794
- L. Smiley, Geometric conditions for unicity of holomorphic curves, Contemp. Math. 25 (1983), 149-154 Zbl0571.32002MR730045
- Z.-H. Tu, Uniqueness problem of meromorphic mappings in several complex variables for moving targets, Tohoku Math. J. 54 (2002), 567-579 Zbl1027.32017MR1936268
- W. Yao, Two meromorphic functions sharing five small functions in the sense , Nagoya Math. J. 167 (2002), 35-54 Zbl1032.30022MR1924718
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.