Uniqueness problem of meromorphic mappings with few targets

Si Quang; Tran Van Tan

Annales UMCS, Mathematica (2008)

  • Volume: 62, Issue: 1, page 123-142
  • ISSN: 2083-7402

Abstract

top
In this paper, using techniques of value distribution theory, we give some uniqueness theorems for meromorphic mappings of Cm into CPn.

How to cite

top

Si Quang, and Tran Van Tan. "Uniqueness problem of meromorphic mappings with few targets." Annales UMCS, Mathematica 62.1 (2008): 123-142. <http://eudml.org/doc/267742>.

@article{SiQuang2008,
abstract = {In this paper, using techniques of value distribution theory, we give some uniqueness theorems for meromorphic mappings of Cm into CPn.},
author = {Si Quang, Tran Van Tan},
journal = {Annales UMCS, Mathematica},
keywords = {Meromorphic mappings; value distribution theory; uniqueness problem; meromorphic mappings},
language = {eng},
number = {1},
pages = {123-142},
title = {Uniqueness problem of meromorphic mappings with few targets},
url = {http://eudml.org/doc/267742},
volume = {62},
year = {2008},
}

TY - JOUR
AU - Si Quang
AU - Tran Van Tan
TI - Uniqueness problem of meromorphic mappings with few targets
JO - Annales UMCS, Mathematica
PY - 2008
VL - 62
IS - 1
SP - 123
EP - 142
AB - In this paper, using techniques of value distribution theory, we give some uniqueness theorems for meromorphic mappings of Cm into CPn.
LA - eng
KW - Meromorphic mappings; value distribution theory; uniqueness problem; meromorphic mappings
UR - http://eudml.org/doc/267742
ER -

References

top
  1. Aihara, Y., Finiteness theorem for meromorphic mappings, Osaka J. Math. 35 (1998), 593-61. Zbl0926.32022
  2. Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets, Nagoya Math. J. 181 (2006), 75-101. Zbl1111.32016
  3. Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 217-242.[WoS] Zbl1126.32013
  4. Dethloff, G., Tan, T. V., An extension of uniqueness theorems for meromorphic mappings, Vietnam J. Math. 34 (2006), 71-94. Zbl1117.32013
  5. Fujimoto, H., The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23. Zbl0313.32005
  6. Fujimoto, H., Nonintegrated defect relation for meromorphic maps of complete Kähler manifolds intoPN1 (C) X ··· X PNκ (C), Japan. J. Math. (N. S.) 11 (1985), 233-264. 
  7. Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J. 152 (1998), 131-152. Zbl0937.32010
  8. Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J. 155 (1999), 161-188. Zbl0946.32008
  9. Ji, S., Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math. 135 (1988), 323-348. Zbl0629.32022
  10. Lang, S., Algebra, Third Edition, Addison-Wesley, 1993. 
  11. Nevanlinna, R., Einige Eideutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367-391. Zbl52.0323.03
  12. Noguchi, J., Ochiai, T., Introduction to Geometric Function Theory in Several Complex Variables, Trans. Math. Monogr. 80, Amer. Math. Soc., Providence, Rhode Island, 1990. Zbl0713.32001
  13. Ru, M., A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), 2701-2707. Zbl0977.32013
  14. Smiley, L., Geometric conditions for unicity of holomorphic curves, Contemp. Math. 25 (1983), 149-154. Zbl0571.32002
  15. Thai, D. D., Quang, S. D., Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables, Internat. J. Math. 17 (2006), 1223-1257. Zbl1117.32014
  16. Thai, D. D., Tan, T. V., Uniqueness problem of meromorphic mappings for moving hypersurfaces, preprint. Zbl1273.32025
  17. Stoll, W., Introduction to value distribution theory of meromorphic maps, Complex analysis (Trieste, 1980), Lecture Notes in Math., 950, Springer, Berlin-New York, 1982, 210-359. 
  18. Stoll, W., Value distribution theory for meromorphic maps, Aspects of Mathematics, E 7 Friedr. Vieweg & Sohn, Braunschweig, 1985. 
  19. Stoll, W., On the propagation of dependences, Pacific J. of Math., 139 (1989), 311-337. Zbl0683.32017
  20. Ye, Z., A unicity theorem for meromorphic mappings, Houston J. Math. 24 (1998), 519-531. Zbl0971.32008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.