The geometry of nondegeneracy conditions in completely integrable systems (corrected version of fascicule 4, volume XIV, 2005, p. 705-719)
Nicolas Roy[1]
- [1] Geometric Analysis Group, Institut für Mathematik, Humboldt Universität, Rudower Chaussee 25, Berlin D-12489, Germany.
Annales de la faculté des sciences de Toulouse Mathématiques (2006)
- Volume: 15, Issue: 2, page 383-397
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- V. I. Arnol’d, A theorem of Liouville concerning integrable dynamics, Siberizn Math. J. 4 (1963), 471-474 Zbl0189.24401MR147742
- A. D. Bruno, Local Methods in nonlinear differential equations, (1989), Springer-Verlag Zbl0674.34002MR993771
- J. Dixmier, Topologie Générale, (1981), Presses Universitaires de France Zbl0449.54001MR637202
- J. J. Duistermaat, Global action-angle coordinates, Comm. Pure App. Math. 32 (1980), 687-706 Zbl0439.58014MR596430
- A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk. SSSR 98 (1954), 527-530 Zbl0056.31502MR68687
- J. Liouville, Note sur l’intégration des équations différentielles de la dynamique, J. Math. Pure App. 20 (1855), 137-138
- H. Mineur, Réduction des systèmes mécaniques à degrés de libertés admettant intégrales premières uniformes en involution aux systèmes à variables séparées, J. Math. Pure Appl. 15 (1936), 221-267 Zbl0015.32401
- H. Rüssmann, Nondegeneracy in the perturbation theory of integrable dynamical systems, Number theory and dynamical systems (York, 1987) 134 (1989), 5-18, London Math. Soc., Cambridge Zbl0689.34039MR1043702
- A. Weinstein, Symplectic manifolds and their lagrangian subamnifolds, Adv. in Math. 6 (1971), 329-346 Zbl0213.48203MR286137
- A. Weinstein, Lagrangian submanifolds and hamiltonian systems, Ann. of Math. 98 (1973), 377-410 Zbl0271.58008MR331428