On functional linear partial differential equations in Gevrey spaces of holomorphic functions.
- [1] Université de Lille 1, UFR de Mathématiques Pures et Appliquées, Cité Scientifique - Bât. M2, 59655 Villeneuve d’Ascq Cedex France.
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 2, page 285-302
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topMalek, Stéphane. "On functional linear partial differential equations in Gevrey spaces of holomorphic functions.." Annales de la faculté des sciences de Toulouse Mathématiques 16.2 (2007): 285-302. <http://eudml.org/doc/10052>.
@article{Malek2007,
abstract = {We investigate existence and unicity of global sectorial holomorphic solutions of functional linear partial differential equations in some Gevrey spaces. A version of the Cauchy-Kowalevskaya theorem for some linear partial $q$-difference-differential equations is also presented.},
affiliation = {Université de Lille 1, UFR de Mathématiques Pures et Appliquées, Cité Scientifique - Bât. M2, 59655 Villeneuve d’Ascq Cedex France.},
author = {Malek, Stéphane},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {2},
pages = {285-302},
publisher = {Université Paul Sabatier, Toulouse},
title = {On functional linear partial differential equations in Gevrey spaces of holomorphic functions.},
url = {http://eudml.org/doc/10052},
volume = {16},
year = {2007},
}
TY - JOUR
AU - Malek, Stéphane
TI - On functional linear partial differential equations in Gevrey spaces of holomorphic functions.
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 2
SP - 285
EP - 302
AB - We investigate existence and unicity of global sectorial holomorphic solutions of functional linear partial differential equations in some Gevrey spaces. A version of the Cauchy-Kowalevskaya theorem for some linear partial $q$-difference-differential equations is also presented.
LA - eng
UR - http://eudml.org/doc/10052
ER -
References
top- Arendt (W.), Batty (C.), Hieber (M.), Neubrander (F.).— Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics, 96. Birkhäuser (2001). Zbl0978.34001MR1886588
- Augustynowicz (A.), Leszczyński (H.), Walter (W.).— Cauchy-Kovalevskaya theory for equations with deviating variables. Dedicated to Janos Aczel on the occasion of his 75th birthday. Aequationes Math. 58, no. 1-2, p. 143–156 (1999). Zbl0929.35004MR1714328
- Balser (W.).— Formal power series and linear systems of meromorphic ordinary differential equations, Springer-Verlag, New-York (2000). Zbl0942.34004MR1722871
- Balser (W.), Malek (S.).— Formal solutions of the complex heat equation in higher spatial dimensions, RIMS, 1367, p. 95-102 (2004).
- Bézivin (J.P.).— Sur les équations fonctionnelles aux -différences, Aequationes Math. 43, p. 159–176 (1993). Zbl0757.39002MR1158724
- DiVizio (L.), Ramis (J.-P.), Sauloy (J.), Zhang (J.).— Équations aux -différences. Gaz. Math. No. 96, p. 20–49 (2003). Zbl1063.39015MR1988639
- Écalle (J.).— Les fonctions résurgentes. Publications Mathématiques d’Orsay (1981). Zbl0499.30034
- Fruchard (A.), Zhang (C.).— Remarques sur les développements asymptotiques. Ann. Fac. Sci. Toulouse Math. (6) 8, no. 1, p. 91–115 (1999). Zbl1157.30322MR1721570
- Kawagishi (M.), Yamanaka (T.).— The heat equation and the shrinking. Electron. J. Differential Equations 2003, No. 97, p.14. Zbl1039.35048MR2000693
- Kawagishi (M.), Yamanaka (T.).— On the Cauchy problem for non linear PDEs in the Gevrey class with shrinkings. J. Math. Soc. Japan 54, no. 3, p. 649–677 (2002). Zbl1032.35059MR1900961
- Kato (T.).— Asymptotic behavior of solutions of the functional differential equation . Delay and functional differential equations and their applications (Proc. Conf., Park City, Utah, 1972), p. 197–217. Academic Press, New York (1972). Zbl0278.34070MR390432
- Malek (S.).— On the summability of formal solutions of linear partial differential equations, J. Dynam. Control. Syst. 11, No. 3 (2005). Zbl1085.35043MR2147192
- Malgrange (B.).— Sommation des séries divergentes. Exposition. Math. 13, no. 2-3, p. 163–222 (1995). Zbl0836.40004MR1346201
- Prüss (J.).— Evolutionary integral equations and applications. Monographs in Mathematics, 87. Birkhäuser Verlag, Basel (1993). Zbl0784.45006MR1238939
- Ramis (J.-P.).— Dévissage Gevrey. Journées Singulières de Dijon (Univ. Dijon, 1978), p. 4, 173-204, Astérisque, 59-60, Soc. Math. France, Paris (1978). Zbl0409.34018MR542737
- Ramis (J.P.).— About the growth of entire functions solutions of linear algebraic -difference equations. Ann. Fac. Sci. Toulouse Math. (6) 1, no. 1, p. 53–94 (1992). Zbl0796.39005MR1191729
- Ramis (J.P.).— Séries divergentes et théories asymptotiques. Bull. Soc. Math. France 121, Panoramas et Syntheses, suppl., p. 74 (1993). Zbl0830.34045MR1272100
- Ramis (J.P.),Zhang (C.).— Développement asymptotique -Gevrey et fonction thêta de Jacobi. C. R. Math. Acad. Sci. Paris 335, no. 11, p. 899–902 (2002). Zbl1025.39014MR1952546
- Rossovskii (L.E.).— On the boundary value problem for the elliptic functional-differential equation with contractions. International Conference on Differential and Functional Differential Equations (Moscow, 1999). Funct. Differ. Equ. 8, no. 3-4, p. 395–406 (2001). Zbl1054.35117MR1950983
- Yamanaka (T.).— A new higher order chain rule and Gevrey class. Ann. Global Anal. Geom. 7, no.3, p. 179–203 (1989). Zbl0719.58002MR1039118
- Zhang (C.).— Développements asymptotiques -Gevrey et séries -sommables. Ann. Inst. Fourier (Grenoble) 49, no.1, p. 227–261 (1999). Zbl0974.39009MR1688144
- Zhang (C.).— Sur un théorème du type de Maillet-Malgrange pour les équations -différences-différentielles. Asymptot. Anal. 17, no. 4, p. 309–314 (1998). Zbl0938.34064MR1656811
- Zubelevich (O.).— Functional-differential equation with dilation and compression of argument, preprint mparc 05-136.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.