On functional linear partial differential equations in Gevrey spaces of holomorphic functions.

Stéphane Malek[1]

  • [1] Université de Lille 1, UFR de Mathématiques Pures et Appliquées, Cité Scientifique - Bât. M2, 59655 Villeneuve d’Ascq Cedex France.

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 2, page 285-302
  • ISSN: 0240-2963

Abstract

top
We investigate existence and unicity of global sectorial holomorphic solutions of functional linear partial differential equations in some Gevrey spaces. A version of the Cauchy-Kowalevskaya theorem for some linear partial q -difference-differential equations is also presented.

How to cite

top

Malek, Stéphane. "On functional linear partial differential equations in Gevrey spaces of holomorphic functions.." Annales de la faculté des sciences de Toulouse Mathématiques 16.2 (2007): 285-302. <http://eudml.org/doc/10052>.

@article{Malek2007,
abstract = {We investigate existence and unicity of global sectorial holomorphic solutions of functional linear partial differential equations in some Gevrey spaces. A version of the Cauchy-Kowalevskaya theorem for some linear partial $q$-difference-differential equations is also presented.},
affiliation = {Université de Lille 1, UFR de Mathématiques Pures et Appliquées, Cité Scientifique - Bât. M2, 59655 Villeneuve d’Ascq Cedex France.},
author = {Malek, Stéphane},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {2},
pages = {285-302},
publisher = {Université Paul Sabatier, Toulouse},
title = {On functional linear partial differential equations in Gevrey spaces of holomorphic functions.},
url = {http://eudml.org/doc/10052},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Malek, Stéphane
TI - On functional linear partial differential equations in Gevrey spaces of holomorphic functions.
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 2
SP - 285
EP - 302
AB - We investigate existence and unicity of global sectorial holomorphic solutions of functional linear partial differential equations in some Gevrey spaces. A version of the Cauchy-Kowalevskaya theorem for some linear partial $q$-difference-differential equations is also presented.
LA - eng
UR - http://eudml.org/doc/10052
ER -

References

top
  1. Arendt (W.), Batty (C.), Hieber (M.), Neubrander (F.).— Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics, 96. Birkhäuser (2001). Zbl0978.34001MR1886588
  2. Augustynowicz (A.), Leszczyński (H.), Walter (W.).— Cauchy-Kovalevskaya theory for equations with deviating variables. Dedicated to Janos Aczel on the occasion of his 75th birthday. Aequationes Math. 58, no. 1-2, p. 143–156 (1999). Zbl0929.35004MR1714328
  3. Balser (W.).— Formal power series and linear systems of meromorphic ordinary differential equations, Springer-Verlag, New-York (2000). Zbl0942.34004MR1722871
  4. Balser (W.), Malek (S.).— Formal solutions of the complex heat equation in higher spatial dimensions, RIMS, 1367, p. 95-102 (2004). 
  5. Bézivin (J.P.).— Sur les équations fonctionnelles aux q -différences, Aequationes Math. 43, p. 159–176 (1993). Zbl0757.39002MR1158724
  6. DiVizio (L.), Ramis (J.-P.), Sauloy (J.), Zhang (J.).— Équations aux q -différences. Gaz. Math. No. 96, p. 20–49 (2003). Zbl1063.39015MR1988639
  7. Écalle (J.).— Les fonctions résurgentes. Publications Mathématiques d’Orsay (1981). Zbl0499.30034
  8. Fruchard (A.), Zhang (C.).— Remarques sur les développements asymptotiques. Ann. Fac. Sci. Toulouse Math. (6) 8, no. 1, p. 91–115 (1999). Zbl1157.30322MR1721570
  9. Kawagishi (M.), Yamanaka (T.).— The heat equation and the shrinking. Electron. J. Differential Equations 2003, No. 97, p.14. Zbl1039.35048MR2000693
  10. Kawagishi (M.), Yamanaka (T.).— On the Cauchy problem for non linear PDEs in the Gevrey class with shrinkings. J. Math. Soc. Japan 54, no. 3, p. 649–677 (2002). Zbl1032.35059MR1900961
  11. Kato (T.).— Asymptotic behavior of solutions of the functional differential equation y ( x ) = a y ( λ x ) + b y ( x ) . Delay and functional differential equations and their applications (Proc. Conf., Park City, Utah, 1972), p. 197–217. Academic Press, New York (1972). Zbl0278.34070MR390432
  12. Malek (S.).— On the summability of formal solutions of linear partial differential equations, J. Dynam. Control. Syst. 11, No. 3 (2005). Zbl1085.35043MR2147192
  13. Malgrange (B.).— Sommation des séries divergentes. Exposition. Math. 13, no. 2-3, p. 163–222 (1995). Zbl0836.40004MR1346201
  14. Prüss (J.).— Evolutionary integral equations and applications. Monographs in Mathematics, 87. Birkhäuser Verlag, Basel (1993). Zbl0784.45006MR1238939
  15. Ramis (J.-P.).— Dévissage Gevrey. Journées Singulières de Dijon (Univ. Dijon, 1978), p. 4, 173-204, Astérisque, 59-60, Soc. Math. France, Paris (1978). Zbl0409.34018MR542737
  16. Ramis (J.P.).— About the growth of entire functions solutions of linear algebraic q -difference equations. Ann. Fac. Sci. Toulouse Math. (6) 1, no. 1, p. 53–94 (1992). Zbl0796.39005MR1191729
  17. Ramis (J.P.).— Séries divergentes et théories asymptotiques. Bull. Soc. Math. France 121, Panoramas et Syntheses, suppl., p. 74 (1993). Zbl0830.34045MR1272100
  18. Ramis (J.P.),Zhang (C.).— Développement asymptotique q -Gevrey et fonction thêta de Jacobi. C. R. Math. Acad. Sci. Paris 335, no. 11, p. 899–902 (2002). Zbl1025.39014MR1952546
  19. Rossovskii (L.E.).— On the boundary value problem for the elliptic functional-differential equation with contractions. International Conference on Differential and Functional Differential Equations (Moscow, 1999). Funct. Differ. Equ. 8, no. 3-4, p. 395–406 (2001). Zbl1054.35117MR1950983
  20. Yamanaka (T.).— A new higher order chain rule and Gevrey class. Ann. Global Anal. Geom. 7, no.3, p. 179–203 (1989). Zbl0719.58002MR1039118
  21. Zhang (C.).— Développements asymptotiques q -Gevrey et séries G q -sommables. Ann. Inst. Fourier (Grenoble) 49, no.1, p. 227–261 (1999). Zbl0974.39009MR1688144
  22. Zhang (C.).— Sur un théorème du type de Maillet-Malgrange pour les équations q -différences-différentielles. Asymptot. Anal. 17, no. 4, p. 309–314 (1998). Zbl0938.34064MR1656811
  23. Zubelevich (O.).— Functional-differential equation with dilation and compression of argument, preprint mparc 05-136. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.