On the holonomy of Lorentzian metrics

Charles Boubel[1]

  • [1] Unité de Mathématiques Pures et Appliquées (UMR CNRS 5669), École Normale Supérieure de Lyon, 46 allée d’Italie 69364 Lyon Cedex 07 France

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 3, page 427-475
  • ISSN: 0240-2963

Abstract

top
Indecomposable Lorentzian holonomy algebras, except 𝔰𝔬 ( n , 1 ) and { 0 } , are not semi-simple; they possibly belong to four families of algebras. All four families are realized as families of holonomy algebras: we describe the corresponding set of germs of metrics in each case.

How to cite

top

Boubel, Charles. "On the holonomy of Lorentzian metrics." Annales de la faculté des sciences de Toulouse Mathématiques 16.3 (2007): 427-475. <http://eudml.org/doc/10059>.

@article{Boubel2007,
abstract = {Indecomposable Lorentzian holonomy algebras, except $\mathfrak\{so\}(n,1)$ and $\lbrace 0\rbrace $, are not semi-simple; they possibly belong to four families of algebras. All four families are realized as families of holonomy algebras: we describe the corresponding set of germs of metrics in each case.},
affiliation = {Unité de Mathématiques Pures et Appliquées (UMR CNRS 5669), École Normale Supérieure de Lyon, 46 allée d’Italie 69364 Lyon Cedex 07 France},
author = {Boubel, Charles},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {3},
pages = {427-475},
publisher = {Université Paul Sabatier, Toulouse},
title = {On the holonomy of Lorentzian metrics},
url = {http://eudml.org/doc/10059},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Boubel, Charles
TI - On the holonomy of Lorentzian metrics
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 3
SP - 427
EP - 475
AB - Indecomposable Lorentzian holonomy algebras, except $\mathfrak{so}(n,1)$ and $\lbrace 0\rbrace $, are not semi-simple; they possibly belong to four families of algebras. All four families are realized as families of holonomy algebras: we describe the corresponding set of germs of metrics in each case.
LA - eng
UR - http://eudml.org/doc/10059
ER -

References

top
  1. Bérard Bergery (L.), Ikemakhen (A.).— On the Holonomy of Lorentzian Manifolds, Proc. of Symposia in Pure Mathematics54, Part 2, p. 27-39 (1993). Zbl0807.53014MR1216527
  2. Berger (M.).— Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. (French) Bull. Soc. Math. France83, p. 279-330 (1955). Zbl0068.36002
  3. Berger (M.).— Les espaces symétriques non compacts, Ann. Sci. Ecol. Norm. Sup.74, p. 85-177 (1957). Zbl0093.35602MR104763
  4. Besse (A.L.).— Einstein Manifolds. Springer Verlag — Berlin, Heidelberg (1987). Zbl0613.53001MR867684
  5. Bryant (R.).— Classical, exceptional, and exotic holonomies: A status report, Besse, A. L. (ed.), Actes de la table ronde de géométrie différentielle en l’honneur de Marcel Berger, Luminy, France, 12–18 juillet 1992. Soc. Math. France. Sémin. Congr.1, p. 93-165 (1996). Zbl0882.53014
  6. Boubel (C.).— Sur l’holonomie des variétés pseudo-riemanniennes, Thèse de doctorat, Université Nancy I, France, May 2000. 
  7. Boubel (C.), Zeghib (A.).— Isometric actions of Lie subgroups of the Moebius group, Nonlinearity, 17, p. 1677-1688 (2004). Zbl1073.53016MR2086144
  8. Cahen (M.), Parker (M.).— Pseudo-Riemannian symmetric spaces, Memoirs of the American Mathematical Society, 24 (229) (1980). Zbl0438.53057MR556610
  9. Cartan (E.).— Sur les variétés à connexion affine et la théorie de la relativité généralisée I et II, Ann. Sci. Ecol. Norm. Sup.40, p. 325-412 (1923) and 41, p. 1-25 (1924). Zbl49.0542.02
  10. Cartan (E.).— Les groupes d’holonomie des espaces généralisés, Acta. Math.48, p. 1-42 (1926). Zbl52.0723.01
  11. Ebin. (D.G.).— The manifold of Riemannian metrics, 1970 Global Analysis, Proc. of Symposia in Pure Mathematics15, p. 11-40 (1968). Zbl0205.53702MR267604
  12. Galaev (A.).— Metrics that realize all types of Lorentzian holonomy, preprint, http://arxiv.org/abs/math.DG/0502575. Zbl1112.53039
  13. Hano (J.), Ozeki (H.).— On the holonomy group of linear connections, Nagoya Math. J.10, p. 97-100 (1956). Zbl0070.38901MR82164
  14. Ikemakhen (A.).— Examples of indecomposable non-irreducible Lorentzian manifolds. Ann. Sci. Math. Qué.20, No.1, p. 53-66 (1996). Zbl0873.53009MR1397338
  15. Lascoux (A.), Berger (M.).— Variétés kählériennes compactes. (French) Lecture Notes in Mathematics.154, Berlin-Heidelberg-New York: Springer-Verlag (1970). Zbl0205.51702MR278248
  16. Leistner (T.).— Towards a classification of Lorentzian holonomy groups, Preprint, 2003, http://arxiv.org/ps/math.DG/0305139 and Part II: Semisimple, non-simple weak-Berger algebras. Preprint, 2003, http://arxiv.org/ps/math.DG/0309274. Zbl1088.53032
  17. Leistner (T.).— Holonomy and Parallel Spinors in Lorentzian Geometry, thesis, Humboldt-Universität zu Berlin (2003). Published by Logos Verlag, Berlin, 2004. Zbl1088.53032
  18. de Rham (G.).— Sur la réductibilité d’un espace de Riemann, Comm. Math. Helv.26, p. 328-344 (1952). Zbl0048.15701
  19. Di Scala (A.J.), Olmos (C.).— The geometry of homogeneous submanifolds of hyperbolic space, Math. Z.237, No.1, p. 199-209 (2001). Zbl0997.53051MR1836778
  20. Schwachhöfer (L.).— Irreducible holonomy representations, Proceedings of the 20th Winter School “Geometry and Physics” (Srní, 2000). Rend. Circ. Mat. Palermo (2) Suppl. No. 66, p. 59-81 (2001). Zbl1037.53034
  21. Schwachhöfer (L.).— Connections with irreducible holonomy representations, Adv. Math. 160, no.1, p. 1-80 (2001). Zbl1037.53035MR1831947
  22. Walker (A.G.).— On parallel fields of partially null vector spaces, Q. J. Math., Oxf. II. Ser. 1, p. 69-79 (sept. 1949). Zbl0036.38303MR35085
  23. Walker (A.G.).— Canonical form for a riemannian space with a parallel field of null planes, I and II, Q. J. Math., Oxf. II. Ser. 1, p. 69-79 and p. 147-152 (1950). Zbl0036.38303MR35085
  24. Wu (H.).— Holonomy groups of indefinite metrics, Pacific J. Math.20, p. 351-392 (1967). Zbl0149.39603MR212740
  25. Zeghib (A.).— Remarks on Lorentz symmetric spaces, Compositio Math., 140, no. 6, p. 1675-1678 (2004). Zbl1067.53009MR2098408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.