On the holonomy of Lorentzian metrics
- [1] Unité de Mathématiques Pures et Appliquées (UMR CNRS 5669), École Normale Supérieure de Lyon, 46 allée d’Italie 69364 Lyon Cedex 07 France
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 3, page 427-475
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBoubel, Charles. "On the holonomy of Lorentzian metrics." Annales de la faculté des sciences de Toulouse Mathématiques 16.3 (2007): 427-475. <http://eudml.org/doc/10059>.
@article{Boubel2007,
abstract = {Indecomposable Lorentzian holonomy algebras, except $\mathfrak\{so\}(n,1)$ and $\lbrace 0\rbrace $, are not semi-simple; they possibly belong to four families of algebras. All four families are realized as families of holonomy algebras: we describe the corresponding set of germs of metrics in each case.},
affiliation = {Unité de Mathématiques Pures et Appliquées (UMR CNRS 5669), École Normale Supérieure de Lyon, 46 allée d’Italie 69364 Lyon Cedex 07 France},
author = {Boubel, Charles},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {3},
pages = {427-475},
publisher = {Université Paul Sabatier, Toulouse},
title = {On the holonomy of Lorentzian metrics},
url = {http://eudml.org/doc/10059},
volume = {16},
year = {2007},
}
TY - JOUR
AU - Boubel, Charles
TI - On the holonomy of Lorentzian metrics
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 3
SP - 427
EP - 475
AB - Indecomposable Lorentzian holonomy algebras, except $\mathfrak{so}(n,1)$ and $\lbrace 0\rbrace $, are not semi-simple; they possibly belong to four families of algebras. All four families are realized as families of holonomy algebras: we describe the corresponding set of germs of metrics in each case.
LA - eng
UR - http://eudml.org/doc/10059
ER -
References
top- Bérard Bergery (L.), Ikemakhen (A.).— On the Holonomy of Lorentzian Manifolds, Proc. of Symposia in Pure Mathematics54, Part 2, p. 27-39 (1993). Zbl0807.53014MR1216527
- Berger (M.).— Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. (French) Bull. Soc. Math. France83, p. 279-330 (1955). Zbl0068.36002
- Berger (M.).— Les espaces symétriques non compacts, Ann. Sci. Ecol. Norm. Sup.74, p. 85-177 (1957). Zbl0093.35602MR104763
- Besse (A.L.).— Einstein Manifolds. Springer Verlag — Berlin, Heidelberg (1987). Zbl0613.53001MR867684
- Bryant (R.).— Classical, exceptional, and exotic holonomies: A status report, Besse, A. L. (ed.), Actes de la table ronde de géométrie différentielle en l’honneur de Marcel Berger, Luminy, France, 12–18 juillet 1992. Soc. Math. France. Sémin. Congr.1, p. 93-165 (1996). Zbl0882.53014
- Boubel (C.).— Sur l’holonomie des variétés pseudo-riemanniennes, Thèse de doctorat, Université Nancy I, France, May 2000.
- Boubel (C.), Zeghib (A.).— Isometric actions of Lie subgroups of the Moebius group, Nonlinearity, 17, p. 1677-1688 (2004). Zbl1073.53016MR2086144
- Cahen (M.), Parker (M.).— Pseudo-Riemannian symmetric spaces, Memoirs of the American Mathematical Society, 24 (229) (1980). Zbl0438.53057MR556610
- Cartan (E.).— Sur les variétés à connexion affine et la théorie de la relativité généralisée I et II, Ann. Sci. Ecol. Norm. Sup.40, p. 325-412 (1923) and 41, p. 1-25 (1924). Zbl49.0542.02
- Cartan (E.).— Les groupes d’holonomie des espaces généralisés, Acta. Math.48, p. 1-42 (1926). Zbl52.0723.01
- Ebin. (D.G.).— The manifold of Riemannian metrics, 1970 Global Analysis, Proc. of Symposia in Pure Mathematics15, p. 11-40 (1968). Zbl0205.53702MR267604
- Galaev (A.).— Metrics that realize all types of Lorentzian holonomy, preprint, http://arxiv.org/abs/math.DG/0502575. Zbl1112.53039
- Hano (J.), Ozeki (H.).— On the holonomy group of linear connections, Nagoya Math. J.10, p. 97-100 (1956). Zbl0070.38901MR82164
- Ikemakhen (A.).— Examples of indecomposable non-irreducible Lorentzian manifolds. Ann. Sci. Math. Qué.20, No.1, p. 53-66 (1996). Zbl0873.53009MR1397338
- Lascoux (A.), Berger (M.).— Variétés kählériennes compactes. (French) Lecture Notes in Mathematics.154, Berlin-Heidelberg-New York: Springer-Verlag (1970). Zbl0205.51702MR278248
- Leistner (T.).— Towards a classification of Lorentzian holonomy groups, Preprint, 2003, http://arxiv.org/ps/math.DG/0305139 and Part II: Semisimple, non-simple weak-Berger algebras. Preprint, 2003, http://arxiv.org/ps/math.DG/0309274. Zbl1088.53032
- Leistner (T.).— Holonomy and Parallel Spinors in Lorentzian Geometry, thesis, Humboldt-Universität zu Berlin (2003). Published by Logos Verlag, Berlin, 2004. Zbl1088.53032
- de Rham (G.).— Sur la réductibilité d’un espace de Riemann, Comm. Math. Helv.26, p. 328-344 (1952). Zbl0048.15701
- Di Scala (A.J.), Olmos (C.).— The geometry of homogeneous submanifolds of hyperbolic space, Math. Z.237, No.1, p. 199-209 (2001). Zbl0997.53051MR1836778
- Schwachhöfer (L.).— Irreducible holonomy representations, Proceedings of the 20th Winter School “Geometry and Physics” (Srní, 2000). Rend. Circ. Mat. Palermo (2) Suppl. No. 66, p. 59-81 (2001). Zbl1037.53034
- Schwachhöfer (L.).— Connections with irreducible holonomy representations, Adv. Math. 160, no.1, p. 1-80 (2001). Zbl1037.53035MR1831947
- Walker (A.G.).— On parallel fields of partially null vector spaces, Q. J. Math., Oxf. II. Ser. 1, p. 69-79 (sept. 1949). Zbl0036.38303MR35085
- Walker (A.G.).— Canonical form for a riemannian space with a parallel field of null planes, I and II, Q. J. Math., Oxf. II. Ser. 1, p. 69-79 and p. 147-152 (1950). Zbl0036.38303MR35085
- Wu (H.).— Holonomy groups of indefinite metrics, Pacific J. Math.20, p. 351-392 (1967). Zbl0149.39603MR212740
- Zeghib (A.).— Remarks on Lorentz symmetric spaces, Compositio Math., 140, no. 6, p. 1675-1678 (2004). Zbl1067.53009MR2098408
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.