A class of metrics on tangent bundles of pseudo-Riemannian manifolds
Archivum Mathematicum (2011)
- Volume: 047, Issue: 4, page 293-308
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDida, H. M., and Ikemakhen, A.. "A class of metrics on tangent bundles of pseudo-Riemannian manifolds." Archivum Mathematicum 047.4 (2011): 293-308. <http://eudml.org/doc/247005>.
@article{Dida2011,
abstract = {We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki metric $g^s$ and the neutral metric $g^n$. First we show that the holonomy group $H^s$ of $(TM ,g^s)$ contains the one of $(M,g)$. What allows us to show that if $(TM ,g^s)$ is indecomposable reducible, then the basis manifold $(M,g)$ is also indecomposable-reducible. We determine completely the holonomy group of $(TM ,g^n)$ according to the one of $(M,g)$. Secondly we found conditions on the base manifold under which $(TM ,g^s)$ ( respectively $(TM ,g^n)$ ) is Kählerian, locally symmetric or Einstein manifolds. $(TM ,g^n)$ is always reducible. We show that it is indecomposable if $(M,g)$ is irreducible.},
author = {Dida, H. M., Ikemakhen, A.},
journal = {Archivum Mathematicum},
keywords = {pseudo-Riemannian manifold; tangent bundle; Sasaki metric; neutral metric; holonomy group; indecomposable-reducible manifold; Einstein manifold; pseudo-Riemannian manifold; Sasaki metric; neutral metric; indecomposable-reducible manifold; Einstein manifold},
language = {eng},
number = {4},
pages = {293-308},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A class of metrics on tangent bundles of pseudo-Riemannian manifolds},
url = {http://eudml.org/doc/247005},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Dida, H. M.
AU - Ikemakhen, A.
TI - A class of metrics on tangent bundles of pseudo-Riemannian manifolds
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 4
SP - 293
EP - 308
AB - We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki metric $g^s$ and the neutral metric $g^n$. First we show that the holonomy group $H^s$ of $(TM ,g^s)$ contains the one of $(M,g)$. What allows us to show that if $(TM ,g^s)$ is indecomposable reducible, then the basis manifold $(M,g)$ is also indecomposable-reducible. We determine completely the holonomy group of $(TM ,g^n)$ according to the one of $(M,g)$. Secondly we found conditions on the base manifold under which $(TM ,g^s)$ ( respectively $(TM ,g^n)$ ) is Kählerian, locally symmetric or Einstein manifolds. $(TM ,g^n)$ is always reducible. We show that it is indecomposable if $(M,g)$ is irreducible.
LA - eng
KW - pseudo-Riemannian manifold; tangent bundle; Sasaki metric; neutral metric; holonomy group; indecomposable-reducible manifold; Einstein manifold; pseudo-Riemannian manifold; Sasaki metric; neutral metric; indecomposable-reducible manifold; Einstein manifold
UR - http://eudml.org/doc/247005
ER -
References
top- Alekseevsky, D. V., Riemannian manifolds with exceptional holonomy groups, Funksional Anal. Prilozh. 2 2 (1968), 1–10. (1968)
- Ambrose, W., Singer, I. M., 10.1090/S0002-9947-1953-0063739-1, Trans. Amer. Math. Soc. 79 (1953), 428–443. (1953) Zbl0052.18002MR0063739DOI10.1090/S0002-9947-1953-0063739-1
- Berger, M., Sur les groupes d’holonomie des variétés à connexion affine et des variétés Riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330. (1955) MR0079806
- Berger, M., Les espace symétriques non compacts 1957, Ann. Sci. École Norm. Sup. (1957). (1957)
- Bergery, L. Bérard, Ikemakhen, A., On the holonomy of Lorentzian manifolds, Proceedings of Symposia in Pure Mathematics, vol. 54 Part 2, 1993, pp. 27–40. (1993) MR1216527
- Bergery, L. Bérard, Ikemakhen, A., Sur l’holonomie des variétés pseudo–Riemanniennes de signature (n,n), Bull. Soc. Math. France 125 (1) (1997), 93–114. (1997) MR1459299
- Besse, A., Einstein manifolds, Springer Verlag, New York, 1987. (1987) Zbl0613.53001MR0867684
- Boubel, Ch., Sur l’holonomie des manifolds pseudo–Riemanniennes, Ph.D. thesis, Université Henri Poincaré Nancy I, 2000. (2000)
- Boubel, Ch., 10.5802/afst.1156, Ann. Fac. Sci. Toulouse 14 (3) (2007), 427–475. (2007) Zbl1213.53063MR2379049DOI10.5802/afst.1156
- Bryant, R. L., Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), 525–576. (1987) Zbl0637.53042MR0916718
- Bryant, R. L., Classical, exceptional, and exotic holonomies: A status report, Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de Marcel Berger, Soc. Math. France, 1996, pp. 93–166. (1996) Zbl0882.53014MR1427757
- Cahen, A., Wallach, N., 10.1090/S0002-9904-1970-12448-X, Bull. Amer. Math. Soc. 76 (1970), 585–591. (1970) Zbl0194.53202MR0267500DOI10.1090/S0002-9904-1970-12448-X
- Cahen, M., Parker, M., Sur des classes d’espaces pseudo-Riemannien symétriques, Bull. Soc. Math. Belg. 22 (1970), 339–354. (1970) MR0286031
- Cahen, M., Parker, M., Pseudo-Riemannian symmetric spaces, Mem. Amer. Math. Soc. 24 (229) (1980). (1980) Zbl0438.53057MR0556610
- de Rham, G., 10.1007/BF02564308, Math Helv. 26 (1952), 328–344. (1952) Zbl0048.15701MR0052177DOI10.1007/BF02564308
- Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math. 2101 (1962), 73–88. (1962) Zbl0105.16002MR0141050
- Galaev, A. S., 10.1142/S0219887806001570, Int. J. Geom. Meth. Modern Phys. 3 (5–6) (2006), 1025–1045. (2006) Zbl1112.53039MR2264404DOI10.1142/S0219887806001570
- Galaev, A. S., 10.1088/0264-9381/27/7/075008, Classical and Quantum Gravity 27 (7) (2010), 1–13. (2010) Zbl1187.83017MR2602646DOI10.1088/0264-9381/27/7/075008
- Galaev, A. S., Leistner, T., Holonomy groups of Lorentzian manifolds: Classification, examples, and applications, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc. (2008), 53—96. (2008) MR2436228
- Ikemakhen, A., Example of indecomposable non–irreductible Lorentzian manifolds, Ann. Sci. Math. Quebec 20 (1996), 53–66. (1996) MR1397338
- Kobayashi, S., Nomizu, K., Fondation of Differential Geometry, vol. I,II, Intersciense, New York–London, 1963. (1963) MR0152974
- Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifolds, J. Reine Angew. Math. 250 (1971), 124–129. (1971) MR0286028
- Krantz, T., Holonomie des connexions sans torsion, Ph.D. thesis, University Henri Poincaré Nancy 1, 2007. (2007)
- Leistner, T., Berger algebras, weak-Berger algebras and Lorentzian holonomy, (2002), sfb 288 preprint no. 567. (2002)
- Leistner, T., On the classification of Lorentzian holonomy groups, J. Differential Geom. 76 (3) (2007), 423–484. (2007) Zbl1129.53029MR2331527
- Wu, H., On the de Rham decomposition theorem, llinois J. Math. 8 (1964), 291–311. (1964) Zbl0122.40005MR0161280
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.