A class of metrics on tangent bundles of pseudo-Riemannian manifolds

H. M. Dida; A. Ikemakhen

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 4, page 293-308
  • ISSN: 0044-8753

Abstract

top
We provide the tangent bundle T M of pseudo-Riemannian manifold ( M , g ) with the Sasaki metric g s and the neutral metric g n . First we show that the holonomy group H s of ( T M , g s ) contains the one of ( M , g ) . What allows us to show that if ( T M , g s ) is indecomposable reducible, then the basis manifold ( M , g ) is also indecomposable-reducible. We determine completely the holonomy group of ( T M , g n ) according to the one of ( M , g ) . Secondly we found conditions on the base manifold under which ( T M , g s ) ( respectively ( T M , g n ) ) is Kählerian, locally symmetric or Einstein manifolds. ( T M , g n ) is always reducible. We show that it is indecomposable if ( M , g ) is irreducible.

How to cite

top

Dida, H. M., and Ikemakhen, A.. "A class of metrics on tangent bundles of pseudo-Riemannian manifolds." Archivum Mathematicum 047.4 (2011): 293-308. <http://eudml.org/doc/247005>.

@article{Dida2011,
abstract = {We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki metric $g^s$ and the neutral metric $g^n$. First we show that the holonomy group $H^s$ of $(TM ,g^s)$ contains the one of $(M,g)$. What allows us to show that if $(TM ,g^s)$ is indecomposable reducible, then the basis manifold $(M,g)$ is also indecomposable-reducible. We determine completely the holonomy group of $(TM ,g^n)$ according to the one of $(M,g)$. Secondly we found conditions on the base manifold under which $(TM ,g^s)$ ( respectively $(TM ,g^n)$ ) is Kählerian, locally symmetric or Einstein manifolds. $(TM ,g^n)$ is always reducible. We show that it is indecomposable if $(M,g)$ is irreducible.},
author = {Dida, H. M., Ikemakhen, A.},
journal = {Archivum Mathematicum},
keywords = {pseudo-Riemannian manifold; tangent bundle; Sasaki metric; neutral metric; holonomy group; indecomposable-reducible manifold; Einstein manifold; pseudo-Riemannian manifold; Sasaki metric; neutral metric; indecomposable-reducible manifold; Einstein manifold},
language = {eng},
number = {4},
pages = {293-308},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A class of metrics on tangent bundles of pseudo-Riemannian manifolds},
url = {http://eudml.org/doc/247005},
volume = {047},
year = {2011},
}

TY - JOUR
AU - Dida, H. M.
AU - Ikemakhen, A.
TI - A class of metrics on tangent bundles of pseudo-Riemannian manifolds
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 4
SP - 293
EP - 308
AB - We provide the tangent bundle $TM$ of pseudo-Riemannian manifold $(M,g)$ with the Sasaki metric $g^s$ and the neutral metric $g^n$. First we show that the holonomy group $H^s$ of $(TM ,g^s)$ contains the one of $(M,g)$. What allows us to show that if $(TM ,g^s)$ is indecomposable reducible, then the basis manifold $(M,g)$ is also indecomposable-reducible. We determine completely the holonomy group of $(TM ,g^n)$ according to the one of $(M,g)$. Secondly we found conditions on the base manifold under which $(TM ,g^s)$ ( respectively $(TM ,g^n)$ ) is Kählerian, locally symmetric or Einstein manifolds. $(TM ,g^n)$ is always reducible. We show that it is indecomposable if $(M,g)$ is irreducible.
LA - eng
KW - pseudo-Riemannian manifold; tangent bundle; Sasaki metric; neutral metric; holonomy group; indecomposable-reducible manifold; Einstein manifold; pseudo-Riemannian manifold; Sasaki metric; neutral metric; indecomposable-reducible manifold; Einstein manifold
UR - http://eudml.org/doc/247005
ER -

References

top
  1. Alekseevsky, D. V., Riemannian manifolds with exceptional holonomy groups, Funksional Anal. Prilozh. 2 2 (1968), 1–10. (1968) 
  2. Ambrose, W., Singer, I. M., 10.1090/S0002-9947-1953-0063739-1, Trans. Amer. Math. Soc. 79 (1953), 428–443. (1953) Zbl0052.18002MR0063739DOI10.1090/S0002-9947-1953-0063739-1
  3. Berger, M., Sur les groupes d’holonomie des variétés à connexion affine et des variétés Riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330. (1955) MR0079806
  4. Berger, M., Les espace symétriques non compacts 1957, Ann. Sci. École Norm. Sup. (1957). (1957) 
  5. Bergery, L. Bérard, Ikemakhen, A., On the holonomy of Lorentzian manifolds, Proceedings of Symposia in Pure Mathematics, vol. 54 Part 2, 1993, pp. 27–40. (1993) MR1216527
  6. Bergery, L. Bérard, Ikemakhen, A., Sur l’holonomie des variétés pseudo–Riemanniennes de signature (n,n), Bull. Soc. Math. France 125 (1) (1997), 93–114. (1997) MR1459299
  7. Besse, A., Einstein manifolds, Springer Verlag, New York, 1987. (1987) Zbl0613.53001MR0867684
  8. Boubel, Ch., Sur l’holonomie des manifolds pseudo–Riemanniennes, Ph.D. thesis, Université Henri Poincaré Nancy I, 2000. (2000) 
  9. Boubel, Ch., 10.5802/afst.1156, Ann. Fac. Sci. Toulouse 14 (3) (2007), 427–475. (2007) Zbl1213.53063MR2379049DOI10.5802/afst.1156
  10. Bryant, R. L., Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), 525–576. (1987) Zbl0637.53042MR0916718
  11. Bryant, R. L., Classical, exceptional, and exotic holonomies: A status report, Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de Marcel Berger, Soc. Math. France, 1996, pp. 93–166. (1996) Zbl0882.53014MR1427757
  12. Cahen, A., Wallach, N., 10.1090/S0002-9904-1970-12448-X, Bull. Amer. Math. Soc. 76 (1970), 585–591. (1970) Zbl0194.53202MR0267500DOI10.1090/S0002-9904-1970-12448-X
  13. Cahen, M., Parker, M., Sur des classes d’espaces pseudo-Riemannien symétriques, Bull. Soc. Math. Belg. 22 (1970), 339–354. (1970) MR0286031
  14. Cahen, M., Parker, M., Pseudo-Riemannian symmetric spaces, Mem. Amer. Math. Soc. 24 (229) (1980). (1980) Zbl0438.53057MR0556610
  15. de Rham, G., 10.1007/BF02564308, Math Helv. 26 (1952), 328–344. (1952) Zbl0048.15701MR0052177DOI10.1007/BF02564308
  16. Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math. 2101 (1962), 73–88. (1962) Zbl0105.16002MR0141050
  17. Galaev, A. S., 10.1142/S0219887806001570, Int. J. Geom. Meth. Modern Phys. 3 (5–6) (2006), 1025–1045. (2006) Zbl1112.53039MR2264404DOI10.1142/S0219887806001570
  18. Galaev, A. S., 10.1088/0264-9381/27/7/075008, Classical and Quantum Gravity 27 (7) (2010), 1–13. (2010) Zbl1187.83017MR2602646DOI10.1088/0264-9381/27/7/075008
  19. Galaev, A. S., Leistner, T., Holonomy groups of Lorentzian manifolds: Classification, examples, and applications, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc. (2008), 53—96. (2008) MR2436228
  20. Ikemakhen, A., Example of indecomposable non–irreductible Lorentzian manifolds, Ann. Sci. Math. Quebec 20 (1996), 53–66. (1996) MR1397338
  21. Kobayashi, S., Nomizu, K., Fondation of Differential Geometry, vol. I,II, Intersciense, New York–London, 1963. (1963) MR0152974
  22. Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifolds, J. Reine Angew. Math. 250 (1971), 124–129. (1971) MR0286028
  23. Krantz, T., Holonomie des connexions sans torsion, Ph.D. thesis, University Henri Poincaré Nancy 1, 2007. (2007) 
  24. Leistner, T., Berger algebras, weak-Berger algebras and Lorentzian holonomy, (2002), sfb 288 preprint no. 567. (2002) 
  25. Leistner, T., On the classification of Lorentzian holonomy groups, J. Differential Geom. 76 (3) (2007), 423–484. (2007) Zbl1129.53029MR2331527
  26. Wu, H., On the de Rham decomposition theorem, llinois J. Math. 8 (1964), 291–311. (1964) Zbl0122.40005MR0161280

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.