Regularity of the solution of some transmission problems in domains with cuspidal point

W. Chickouche[1]; Serge Nicaise[2]

  • [1] Université de Jijel, Département de Mathematiques, B.P. 98, Ouled Aissa, 18000 Jijel, Algeria
  • [2] Université de Valenciennes et du Hainaut Cambrésis, MACS, Institut des Sciences et Techniques de Valenciennes, F-59313 - Valenciennes Cedex 9, France

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 3, page 529-560
  • ISSN: 0240-2963

Abstract

top
Regularity results for transmission problems in domains with (outgoing) cuspidal points are considered. We prove in some special but generic situations that the solution is piecewise in H 2 .

How to cite

top

Chickouche, W., and Nicaise, Serge. "Regularity of the solution of some transmission problems in domains with cuspidal point." Annales de la faculté des sciences de Toulouse Mathématiques 16.3 (2007): 529-560. <http://eudml.org/doc/10061>.

@article{Chickouche2007,
abstract = {Regularity results for transmission problems in domains with (outgoing) cuspidal points are considered. We prove in some special but generic situations that the solution is piecewise in $H^2$.},
affiliation = {Université de Jijel, Département de Mathematiques, B.P. 98, Ouled Aissa, 18000 Jijel, Algeria; Université de Valenciennes et du Hainaut Cambrésis, MACS, Institut des Sciences et Techniques de Valenciennes, F-59313 - Valenciennes Cedex 9, France},
author = {Chickouche, W., Nicaise, Serge},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {3},
pages = {529-560},
publisher = {Université Paul Sabatier, Toulouse},
title = {Regularity of the solution of some transmission problems in domains with cuspidal point},
url = {http://eudml.org/doc/10061},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Chickouche, W.
AU - Nicaise, Serge
TI - Regularity of the solution of some transmission problems in domains with cuspidal point
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 3
SP - 529
EP - 560
AB - Regularity results for transmission problems in domains with (outgoing) cuspidal points are considered. We prove in some special but generic situations that the solution is piecewise in $H^2$.
LA - eng
UR - http://eudml.org/doc/10061
ER -

References

top
  1. Belahdji (K.).— La régularité L p de la solution du problème de Dirichlet dans un domaine à points de rebroussement, C. R. Acad. Sci. Paris., t. 322, Série I, p. 5-8 (1996). Zbl0837.35025MR1390811
  2. Dauge (M.).— Elliptic boundary value problems in corner domains. Smoothness and asymptotics of solutions, L.N. in Math., 1341, Springer Verlag, 1988. Zbl0668.35001MR961439
  3. Dauge (M.).— Strongly elliptic problems near cuspidal points and edges, Partial differential equations and functional analysis, 93-110, Progr. Nonlinear Differential Equations Appl., Birkhauser Boston, Boston, 22 (1996). Zbl0853.35018MR1399126
  4. Grisvard (P.).— Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24, Pitman, Boston, 1985. Zbl0695.35060MR775683
  5. Grisvard (P.).— Problèmes aux limites dans des domaines avec points de rebroussement, Ann. Fac. Sc. Toulouse II, n¡ 3, p. 561-578 (1995). Zbl0864.35018MR1607512
  6. Ibuki (K.).— Dirichlet Problem for elliptic equations of the second order in a singular domain of R 2 , Journal Math. Kyoto Univ., 14, n¡ 1, p. 54-71 (1974). Zbl0281.35031MR333432
  7. Khelif (A.).— Problèmes aux limites pour le Laplacien dans un domaine à points cuspides, C. R. Acad. Sci. Paris., 287, p. 1113-1116 (1978). Zbl0402.35015MR520417
  8. Kondrat’ev (V.A.).— Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., 16, p. 227-313 (1967). Zbl0194.13405
  9. Lemrabet (K.).— Régularité de la solution d’un problème de transmission, J. Math. Pures et Appl., 56, p. 1-38 (1977). Zbl0366.35036
  10. Maz’ya (V.G.), Plamenevskii (B.A.).— Estimates in L p and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary, Amer. Math. Soc. Transl. (2), 123, p. 1-56 (1984). Zbl0554.35035
  11. Nicaise (S.).— Polygonal interface problems, Peter Lang, Berlin, 1993. Zbl0794.35040MR1236228
  12. Nicaise (S.), Sändig (A.-M.).— General interface problems I,II, Math. Meth. Appl. Sci., 17, p. 395-450 (1994). Zbl0824.35014MR1274152
  13. Steux (J.-L.).— Problème de Dirichlet pour le Laplacien dans un domaine à point cuspide, C. R. Acad. Sci. Paris., 306, Série I, p. 773-776 (1988). Zbl0651.35016MR951233
  14. Steux (J.-L.).— Problème de Dirichlet pour un opérateur elliptique dans un domaine à point cuspide, Ann. Fac. Sc. Toulouse VI, n¡ 1, p.143-175 (1997). Zbl0939.35060MR1473086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.