The density of rational points on a pfaff curve
- [1] School of Mathematics, University of Bristol, Bristol, BS8 1TW (UK)
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 3, page 635-645
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topPila, Jonathan. "The density of rational points on a pfaff curve." Annales de la faculté des sciences de Toulouse Mathématiques 16.3 (2007): 635-645. <http://eudml.org/doc/10065>.
@article{Pila2007,
abstract = {This paper is concerned with the density of rational points on the graph of a non-algebraic pfaffian function.},
affiliation = {School of Mathematics, University of Bristol, Bristol, BS8 1TW (UK)},
author = {Pila, Jonathan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {3},
pages = {635-645},
publisher = {Université Paul Sabatier, Toulouse},
title = {The density of rational points on a pfaff curve},
url = {http://eudml.org/doc/10065},
volume = {16},
year = {2007},
}
TY - JOUR
AU - Pila, Jonathan
TI - The density of rational points on a pfaff curve
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 3
SP - 635
EP - 645
AB - This paper is concerned with the density of rational points on the graph of a non-algebraic pfaffian function.
LA - eng
UR - http://eudml.org/doc/10065
ER -
References
top- Bombieri (E) and Pila (J.).— The number of integral points on arcs and ovals, Duke Math. J.59, p. 337-357 (1989). Zbl0718.11048MR1016893
- van den Dries (L.).— Tame topology and -minimal structures, LMS Lecture Note Series 248, CUP, Cambridge, (1998). Zbl0953.03045
- Gabrielov (A.) and Vorobjov (N.).— Complexity of computations with pfaffian and noetherian functions, in Normal Forms, Bifurcations and Finiteness problems in Differential Equations, Kluwer, (2004). MR2083248
- Gwozdziewicz (J.), Kurdyka (K.), Parusinski (A.).— On the number of solutions of an algebraic equation on the curve , and a consequence for o-minimal structures, Proc. Amer. Math. Soc.127, p. 1057-1064 (1999). Zbl0916.03026MR1476134
- Khovanskii (A. G.).— Fewnomials, Translations of Mathematical Monographs 88, AMS, Providence, (1991). Zbl0728.12002MR1108621
- Pila (J.).— Integer points on the dilation of a subanalytic surface, Quart. J. Math.55, p. 207-223 (2004). Zbl1111.32004MR2068319
- Pila (J.).— Rational points on a subanalytic surface, Ann. Inst. Fourier55, p. 1501-1516 (2005). Zbl1121.11032MR2172272
- Pila (J.).— Note on the rational points of a pfaff curve, Proc. Edin. Math. Soc., 49 (2006), 391-397. Zbl1097.11037MR2243794
- Pila (J.).— Mild parameterization and the rational points of a pfaff curve, Commentari Mathematici Universitatis Sancti Pauli, 55 (2006), 1-8. Zbl1129.11029MR2251995
- Pila (J.) and Wilkie (A. J.).— The rational points of a definable set, Duke Math. J., 133 (2006), 591-616. Zbl1217.11066MR2228464
- Pólya (G.).— On the zeros of the derivative of a function and its analytic character, Bull. Amer. Math. Soc.49, 178-191 (1943). Also Collected Papers: Volume II, MIT Press, Cambridge Mass., p. 394-407 (1974). Zbl0061.11510MR7781
- Waldschmidt (M.).— Diophantine approximation on linear algebraic groups, Grund. Math. Wissen. 326, Springer, Berlin, (2000). Zbl0944.11024MR1756786
- Wilkie (A. J.).— A theorem of the complement and some new o-minimal structures, Selecta Math. (N. S.)5, p. 397-421 (1999). Zbl0948.03037MR1740677
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.