The density of rational points on a pfaff curve

Jonathan Pila[1]

  • [1] School of Mathematics, University of Bristol, Bristol, BS8 1TW (UK)

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 3, page 635-645
  • ISSN: 0240-2963

Abstract

top
This paper is concerned with the density of rational points on the graph of a non-algebraic pfaffian function.

How to cite

top

Pila, Jonathan. "The density of rational points on a pfaff curve." Annales de la faculté des sciences de Toulouse Mathématiques 16.3 (2007): 635-645. <http://eudml.org/doc/10065>.

@article{Pila2007,
abstract = {This paper is concerned with the density of rational points on the graph of a non-algebraic pfaffian function.},
affiliation = {School of Mathematics, University of Bristol, Bristol, BS8 1TW (UK)},
author = {Pila, Jonathan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {3},
pages = {635-645},
publisher = {Université Paul Sabatier, Toulouse},
title = {The density of rational points on a pfaff curve},
url = {http://eudml.org/doc/10065},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Pila, Jonathan
TI - The density of rational points on a pfaff curve
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 3
SP - 635
EP - 645
AB - This paper is concerned with the density of rational points on the graph of a non-algebraic pfaffian function.
LA - eng
UR - http://eudml.org/doc/10065
ER -

References

top
  1. Bombieri (E) and Pila (J.).— The number of integral points on arcs and ovals, Duke Math. J.59, p. 337-357 (1989). Zbl0718.11048MR1016893
  2. van den Dries (L.).— Tame topology and o -minimal structures, LMS Lecture Note Series 248, CUP, Cambridge, (1998). Zbl0953.03045
  3. Gabrielov (A.) and Vorobjov (N.).— Complexity of computations with pfaffian and noetherian functions, in Normal Forms, Bifurcations and Finiteness problems in Differential Equations, Kluwer, (2004). MR2083248
  4. Gwozdziewicz (J.), Kurdyka (K.), Parusinski (A.).— On the number of solutions of an algebraic equation on the curve y = e x + sin x , x &gt; 0 , and a consequence for o-minimal structures, Proc. Amer. Math. Soc.127, p. 1057-1064 (1999). Zbl0916.03026MR1476134
  5. Khovanskii (A. G.).— Fewnomials, Translations of Mathematical Monographs 88, AMS, Providence, (1991). Zbl0728.12002MR1108621
  6. Pila (J.).— Integer points on the dilation of a subanalytic surface, Quart. J. Math.55, p. 207-223 (2004). Zbl1111.32004MR2068319
  7. Pila (J.).— Rational points on a subanalytic surface, Ann. Inst. Fourier55, p. 1501-1516 (2005). Zbl1121.11032MR2172272
  8. Pila (J.).— Note on the rational points of a pfaff curve, Proc. Edin. Math. Soc., 49 (2006), 391-397. Zbl1097.11037MR2243794
  9. Pila (J.).— Mild parameterization and the rational points of a pfaff curve, Commentari Mathematici Universitatis Sancti Pauli, 55 (2006), 1-8. Zbl1129.11029MR2251995
  10. Pila (J.) and Wilkie (A. J.).— The rational points of a definable set, Duke Math. J., 133 (2006), 591-616. Zbl1217.11066MR2228464
  11. Pólya (G.).— On the zeros of the derivative of a function and its analytic character, Bull. Amer. Math. Soc.49, 178-191 (1943). Also Collected Papers: Volume II, MIT Press, Cambridge Mass., p. 394-407 (1974). Zbl0061.11510MR7781
  12. Waldschmidt (M.).— Diophantine approximation on linear algebraic groups, Grund. Math. Wissen. 326, Springer, Berlin, (2000). Zbl0944.11024MR1756786
  13. Wilkie (A. J.).— A theorem of the complement and some new o-minimal structures, Selecta Math. (N. S.)5, p. 397-421 (1999). Zbl0948.03037MR1740677

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.