Counting rational points on a certain exponential-algebraic surface
- [1] University of Bristol School of Mathematics Bristol, BS8 1TW (United Kingdom)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 2, page 489-514
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPila, Jonathan. "Counting rational points on a certain exponential-algebraic surface." Annales de l’institut Fourier 60.2 (2010): 489-514. <http://eudml.org/doc/116279>.
@article{Pila2010,
abstract = {We study the distribution of rational points on a certain exponential-algebraic surface and we prove, for this surface, a conjecture of A. J. Wilkie.},
affiliation = {University of Bristol School of Mathematics Bristol, BS8 1TW (United Kingdom)},
author = {Pila, Jonathan},
journal = {Annales de l’institut Fourier},
keywords = {O-minimal structure; rational points; transcendental numbers; exponential-algebraic surface},
language = {eng},
number = {2},
pages = {489-514},
publisher = {Association des Annales de l’institut Fourier},
title = {Counting rational points on a certain exponential-algebraic surface},
url = {http://eudml.org/doc/116279},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Pila, Jonathan
TI - Counting rational points on a certain exponential-algebraic surface
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 489
EP - 514
AB - We study the distribution of rational points on a certain exponential-algebraic surface and we prove, for this surface, a conjecture of A. J. Wilkie.
LA - eng
KW - O-minimal structure; rational points; transcendental numbers; exponential-algebraic surface
UR - http://eudml.org/doc/116279
ER -
References
top- E. Bombieri, Algebraic values of meromorphic maps, Inventiones 10 (1970), 267-287 Zbl0214.33702MR306201
- E. Bombieri, W. Gubler, Heights in Diophantine geometry, (2007), New Mathematical Monographs 4. Cambridge: Cambridge University Press. xvi, 652 p. Zbl1115.11034MR2216774
- E. Bombieri, J. Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), 337-357 Zbl0718.11048MR1016893
- L. Butler, Some cases of Wilkie’s conjecture, (2009) Zbl1253.03063
- Lou van den Dries, Tame topology and o-minimal structures, (1998), London Mathematical Society, Lecture Note Series. 248. Cambridge University Press, Cambridge: x, 180 p Zbl0953.03045MR1633348
- Lou van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540 Zbl0889.03025MR1404337
- A. Gabrielov, N. Vorobjov, Complexity of computations with Pfaffian and Noetherian functions, Normal Forms, Bifurcations and Finiteness problems in Differential Equations (2004), Kluwer Zbl0832.68056MR2083248
- S. LANG, Algebraic values of meromorphic functions, Topology 3 (1965), 183-191 Zbl0133.13804MR190092
- S. LANG, Introduction to transcendental numbers, Addison-Wesley, Reading Mass (1966) Zbl0144.04101MR214547
- J. Pila, Integer points on the dilation of a subanalytic surface, Q. J. Math. 55 (2004), 207-223 Zbl1111.32004MR2068319
- J. Pila, Rational points on a subanalytic surface, Ann. Inst. Fourier 55 (2005), 1501-1516 Zbl1121.11032MR2172272
- J. Pila, Mild parameterization and the rational points of a pfaff curve, Commentarii Mathematici Universitatis Sancti Pauli 55 (2006), 1-8 Zbl1129.11029MR2251995
- J. Pila, The density of rational points on a pfaff curve, Ann. Fac. Sci. Toulouse 16 (2007), 635-645 Zbl1229.11053MR2379055
- J. Pila, On the algebraic points of a definable set, Selecta Math. N.S. 15 (2009), 151-170 Zbl1218.11068MR2511202
- J. Pila, A. J. Wilkie, The rational points of a definable set, Duke Math. J. 133 (2006), 591-616 Zbl1217.11066MR2228464
- D. Roy, Interpolation formulas and auxiliary functions, J. Number Theory 94 (2002), 248-285 Zbl1010.11039MR1916273
- Michel Waldschmidt, Integer values entire functions on Cartesian products, Number theory in progress, Vol. 1 (Zakopane-Koscieliko, 1997) Zbl0941.11028
- Michel Waldschmidt, Propriétés arithmétiques de fonctions de plusieurs variables. III, Sémin. P. Lelong - H. Skoda, Analyse, Années 1978/79, Lect. Notes Math. 822, 332-356 (1980) (1980) Zbl0444.10028MR599036
- Michel Waldschmidt, Diophantine approximation on linear algebraic groups, 326 (2000), Grundlehren der Mathematischen Wissenschaften, Berlin Zbl0944.11024MR1756786
- Michel Waldschmidt, Algebraic values of analytic functions, J. Comput. Appl. Math. 160 (2003), 323-333 Zbl1062.11049MR2022624
- A. J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094 Zbl0892.03013MR1398816
- A. J. Wilkie, A theorem of the complement and some new o-minimal structures, Selecta Math. N.S. 5 (1999), 397-421 Zbl0948.03037MR1740677
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.