Counting rational points on a certain exponential-algebraic surface

Jonathan Pila[1]

  • [1] University of Bristol School of Mathematics Bristol, BS8 1TW (United Kingdom)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 2, page 489-514
  • ISSN: 0373-0956

Abstract

top
We study the distribution of rational points on a certain exponential-algebraic surface and we prove, for this surface, a conjecture of A. J. Wilkie.

How to cite

top

Pila, Jonathan. "Counting rational points on a certain exponential-algebraic surface." Annales de l’institut Fourier 60.2 (2010): 489-514. <http://eudml.org/doc/116279>.

@article{Pila2010,
abstract = {We study the distribution of rational points on a certain exponential-algebraic surface and we prove, for this surface, a conjecture of A. J. Wilkie.},
affiliation = {University of Bristol School of Mathematics Bristol, BS8 1TW (United Kingdom)},
author = {Pila, Jonathan},
journal = {Annales de l’institut Fourier},
keywords = {O-minimal structure; rational points; transcendental numbers; exponential-algebraic surface},
language = {eng},
number = {2},
pages = {489-514},
publisher = {Association des Annales de l’institut Fourier},
title = {Counting rational points on a certain exponential-algebraic surface},
url = {http://eudml.org/doc/116279},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Pila, Jonathan
TI - Counting rational points on a certain exponential-algebraic surface
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 2
SP - 489
EP - 514
AB - We study the distribution of rational points on a certain exponential-algebraic surface and we prove, for this surface, a conjecture of A. J. Wilkie.
LA - eng
KW - O-minimal structure; rational points; transcendental numbers; exponential-algebraic surface
UR - http://eudml.org/doc/116279
ER -

References

top
  1. E. Bombieri, Algebraic values of meromorphic maps, Inventiones 10 (1970), 267-287 Zbl0214.33702MR306201
  2. E. Bombieri, W. Gubler, Heights in Diophantine geometry, (2007), New Mathematical Monographs 4. Cambridge: Cambridge University Press. xvi, 652 p. Zbl1115.11034MR2216774
  3. E. Bombieri, J. Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), 337-357 Zbl0718.11048MR1016893
  4. L. Butler, Some cases of Wilkie’s conjecture, (2009) Zbl1253.03063
  5. Lou van den Dries, Tame topology and o-minimal structures, (1998), London Mathematical Society, Lecture Note Series. 248. Cambridge University Press, Cambridge: x, 180 p Zbl0953.03045MR1633348
  6. Lou van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540 Zbl0889.03025MR1404337
  7. A. Gabrielov, N. Vorobjov, Complexity of computations with Pfaffian and Noetherian functions, Normal Forms, Bifurcations and Finiteness problems in Differential Equations (2004), Kluwer Zbl0832.68056MR2083248
  8. S. LANG, Algebraic values of meromorphic functions, Topology 3 (1965), 183-191 Zbl0133.13804MR190092
  9. S. LANG, Introduction to transcendental numbers, Addison-Wesley, Reading Mass (1966) Zbl0144.04101MR214547
  10. J. Pila, Integer points on the dilation of a subanalytic surface, Q. J. Math. 55 (2004), 207-223 Zbl1111.32004MR2068319
  11. J. Pila, Rational points on a subanalytic surface, Ann. Inst. Fourier 55 (2005), 1501-1516 Zbl1121.11032MR2172272
  12. J. Pila, Mild parameterization and the rational points of a pfaff curve, Commentarii Mathematici Universitatis Sancti Pauli 55 (2006), 1-8 Zbl1129.11029MR2251995
  13. J. Pila, The density of rational points on a pfaff curve, Ann. Fac. Sci. Toulouse 16 (2007), 635-645 Zbl1229.11053MR2379055
  14. J. Pila, On the algebraic points of a definable set, Selecta Math. N.S. 15 (2009), 151-170 Zbl1218.11068MR2511202
  15. J. Pila, A. J. Wilkie, The rational points of a definable set, Duke Math. J. 133 (2006), 591-616 Zbl1217.11066MR2228464
  16. D. Roy, Interpolation formulas and auxiliary functions, J. Number Theory 94 (2002), 248-285 Zbl1010.11039MR1916273
  17. Michel Waldschmidt, Integer values entire functions on Cartesian products, Number theory in progress, Vol. 1 (Zakopane-Koscieliko, 1997) Zbl0941.11028
  18. Michel Waldschmidt, Propriétés arithmétiques de fonctions de plusieurs variables. III, Sémin. P. Lelong - H. Skoda, Analyse, Années 1978/79, Lect. Notes Math. 822, 332-356 (1980) (1980) Zbl0444.10028MR599036
  19. Michel Waldschmidt, Diophantine approximation on linear algebraic groups, 326 (2000), Grundlehren der Mathematischen Wissenschaften, Berlin Zbl0944.11024MR1756786
  20. Michel Waldschmidt, Algebraic values of analytic functions, J. Comput. Appl. Math. 160 (2003), 323-333 Zbl1062.11049MR2022624
  21. A. J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094 Zbl0892.03013MR1398816
  22. A. J. Wilkie, A theorem of the complement and some new o-minimal structures, Selecta Math. N.S. 5 (1999), 397-421 Zbl0948.03037MR1740677

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.