Galois theory of -difference equations
Marius van der Put[1]; Marc Reversat[2]
- [1] Department of Mathematics, University of Groningen, P.O.Box 800, 9700 AV Groningen, The Netherlands
- [2] Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse cedex 9. 31062 Toulouse cedex 9, France,
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 3, page 665-718
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topvan der Put, Marius, and Reversat, Marc. "Galois theory of $q$-difference equations." Annales de la faculté des sciences de Toulouse Mathématiques 16.3 (2007): 665-718. <http://eudml.org/doc/10067>.
@article{vanderPut2007,
abstract = {Choose $q\in \mathbb\{C\}$ with $0<|q|<1$. The main theme of this paper is the study of linear $q$-difference equations over the field $K$ of germs of meromorphic functions at $0$. A systematic treatment of classification and moduli is developed. It turns out that a difference module $M$ over $K$ induces in a functorial way a vector bundle $v(M)$ on the Tate curve $E_q\!:\,=\{\mathbb\{C\}\}^\{\ast \}/q^\{\mathbb\{Z\}\}$ that was known for modules with ”integer slopes“, [Saul, 2]). As a corollary one rediscovers Atiyah’s classification $([\{ \textrm\{A\}t\}])$ of the indecomposable vector bundles on the complex Tate curve. Linear $q$-difference equations are also studied in positive characteristic $p$ in order to derive Atiyah’s results for elliptic curves for which the $j$-invariant is not algebraic over $\{\mathbb\{F\}\}_p$.},
affiliation = {Department of Mathematics, University of Groningen, P.O.Box 800, 9700 AV Groningen, The Netherlands; Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse cedex 9. 31062 Toulouse cedex 9, France,},
author = {van der Put, Marius, Reversat, Marc},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
number = {3},
pages = {665-718},
publisher = {Université Paul Sabatier, Toulouse},
title = {Galois theory of $q$-difference equations},
url = {http://eudml.org/doc/10067},
volume = {16},
year = {2007},
}
TY - JOUR
AU - van der Put, Marius
AU - Reversat, Marc
TI - Galois theory of $q$-difference equations
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 3
SP - 665
EP - 718
AB - Choose $q\in \mathbb{C}$ with $0<|q|<1$. The main theme of this paper is the study of linear $q$-difference equations over the field $K$ of germs of meromorphic functions at $0$. A systematic treatment of classification and moduli is developed. It turns out that a difference module $M$ over $K$ induces in a functorial way a vector bundle $v(M)$ on the Tate curve $E_q\!:\,={\mathbb{C}}^{\ast }/q^{\mathbb{Z}}$ that was known for modules with ”integer slopes“, [Saul, 2]). As a corollary one rediscovers Atiyah’s classification $([{ \textrm{A}t}])$ of the indecomposable vector bundles on the complex Tate curve. Linear $q$-difference equations are also studied in positive characteristic $p$ in order to derive Atiyah’s results for elliptic curves for which the $j$-invariant is not algebraic over ${\mathbb{F}}_p$.
LA - eng
UR - http://eudml.org/doc/10067
ER -
References
top- Atiyah (M.F.).— Vector bundles on elliptic curves, Proc.London.Math. Soc., 7, 414-452 (1957). Zbl0084.17305MR131423
- Collected mathematical papers of George David Birkhoff, Volume 1. Dover publications, 1968.
- Forster (O.), Riemannsche Fläche, Heidelberger Taschenbücher, Springer Verlag (1977). Zbl0381.30021MR447557
- Fresnel (J.), van der Put (M.), Rigid Analytic Geometry and its Applications, Progress in Math., 218, 2004. Zbl1096.14014
- van der Put (M.), Skew differential fields, differential and difference equations, Astérisque, 296, p. 191-207 (2004). Zbl1082.12005MR2136010
- van der Put (M.), Reversat (M.), Krichever modules for difference and differential equations, Astérisque, 296, 197-225 (2004). Zbl1086.12001MR2136011
- van der Put (M.), Singer (M.F.), Galois theory of difference equations, Lect. Notes in Math., vol 1666, Springer Verlag, 1997. Zbl0930.12006MR1480919
- van der Put (M.), Singer (M.F.), Galois theory of linear differential equations, Grundlehren der mathematische Wissenschaften 328, Springer Verlag, 2003. Zbl1036.12008MR1960772
- Ramis (J.-P.), Sauloy (J.), Zhang (C.), La variété des classes analytiques d’équations aux -différences dans une classe formelle , C.R.Acad.Sci.Paris, Ser. I 338 (2004). Zbl1038.39011
- Sauloy (J.), Galois theory of fuchsian -difference equations, Ann. Sci. Éc. Norm. Sup. 4 série 36, no 6, p. 925-968 (2003). Zbl1053.39033MR2032530
- Sauloy (J.), Algebraic construction of the Stokes sheaf for irregular linear -difference equations, Astérisque 296, p. 227-251 (2004). Zbl1075.39020MR2136012
- Sauloy (J.), La filtration canonique par les pentes d’un module aux -différences et le gradué associé, Ann. Inst. Fourier 54, no. 1, p.181–210 (2004). Zbl1061.39013
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.