Second order linear q -difference equations: nonoscillation and asymptotics

Pavel Řehák

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 1107-1134
  • ISSN: 0011-4642

Abstract

top
The paper can be understood as a completion of the q -Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear q -difference equations. The q -Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice q 0 : = { q k : k 0 } with q > 1 . In addition to recalling the existing concepts of q -regular variation and q -rapid variation we introduce q -regularly bounded functions and prove many related properties. The q -Karamata theory is then applied to describe (in an exhaustive way) the asymptotic behavior as t of solutions to the q -difference equation D q 2 y ( t ) + p ( t ) y ( q t ) = 0 , where p : q 0 . We also present the existing and some new criteria of Kneser type which are related to our subject. A comparison of our results with their continuous counterparts is made. It reveals interesting differences between the continuous case and the q -case and validates the fact that q -calculus is a natural setting for the Karamata like theory and provides a powerful tool in qualitative theory of dynamic equations.

How to cite

top

Řehák, Pavel. "Second order linear $q$-difference equations: nonoscillation and asymptotics." Czechoslovak Mathematical Journal 61.4 (2011): 1107-1134. <http://eudml.org/doc/197009>.

@article{Řehák2011,
abstract = {The paper can be understood as a completion of the $q$-Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear $q$-difference equations. The $q$-Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice $q^\{\mathbb \{N\}_0\}:=\lbrace q^k\colon k\in \mathbb \{N\}_0\rbrace $ with $q>1$. In addition to recalling the existing concepts of $q$-regular variation and $q$-rapid variation we introduce $q$-regularly bounded functions and prove many related properties. The $q$-Karamata theory is then applied to describe (in an exhaustive way) the asymptotic behavior as $t\rightarrow \infty $ of solutions to the $q$-difference equation $D_q^2y(t)+p(t)y(qt)=0$, where $p\colon \smash\{q^\{\mathbb \{N\}_0\}\}\rightarrow \mathbb \{R\}$. We also present the existing and some new criteria of Kneser type which are related to our subject. A comparison of our results with their continuous counterparts is made. It reveals interesting differences between the continuous case and the $q$-case and validates the fact that $q$-calculus is a natural setting for the Karamata like theory and provides a powerful tool in qualitative theory of dynamic equations.},
author = {Řehák, Pavel},
journal = {Czechoslovak Mathematical Journal},
keywords = {regularly varying functions; $q$-difference equations; asymptotic behavior; oscillation; regularly varying function; -difference equation; asymptotic behavior; oscillation},
language = {eng},
number = {4},
pages = {1107-1134},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Second order linear $q$-difference equations: nonoscillation and asymptotics},
url = {http://eudml.org/doc/197009},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Řehák, Pavel
TI - Second order linear $q$-difference equations: nonoscillation and asymptotics
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 1107
EP - 1134
AB - The paper can be understood as a completion of the $q$-Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear $q$-difference equations. The $q$-Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice $q^{\mathbb {N}_0}:=\lbrace q^k\colon k\in \mathbb {N}_0\rbrace $ with $q>1$. In addition to recalling the existing concepts of $q$-regular variation and $q$-rapid variation we introduce $q$-regularly bounded functions and prove many related properties. The $q$-Karamata theory is then applied to describe (in an exhaustive way) the asymptotic behavior as $t\rightarrow \infty $ of solutions to the $q$-difference equation $D_q^2y(t)+p(t)y(qt)=0$, where $p\colon \smash{q^{\mathbb {N}_0}}\rightarrow \mathbb {R}$. We also present the existing and some new criteria of Kneser type which are related to our subject. A comparison of our results with their continuous counterparts is made. It reveals interesting differences between the continuous case and the $q$-case and validates the fact that $q$-calculus is a natural setting for the Karamata like theory and provides a powerful tool in qualitative theory of dynamic equations.
LA - eng
KW - regularly varying functions; $q$-difference equations; asymptotic behavior; oscillation; regularly varying function; -difference equation; asymptotic behavior; oscillation
UR - http://eudml.org/doc/197009
ER -

References

top
  1. Adams, C. R., 10.2307/1968274, Ann. of Math. 30 (1928/29), 195-205. (1928) MR1502876DOI10.2307/1968274
  2. Bangerezako, G., An Introduction to q -Difference Equations, Preprint, Bujumbura (2007). (2007) 
  3. Baoguo, J., Erbe, L., Peterson, A. C., 10.1016/j.aml.2008.07.014, Appl. Math. Lett. 22 (2009), 871-875. (2009) Zbl1170.39002MR2523597DOI10.1016/j.aml.2008.07.014
  4. Bekker, M. B., Bohner, M. J., Herega, A. N., Voulov, H., 10.1088/1751-8113/43/14/145207, J. Phys. A, Math. Theor. 43 (2010), 15 pp. (2010) Zbl1192.39006MR2606438DOI10.1088/1751-8113/43/14/145207
  5. Bingham, N. H., Goldie, C. M., Teugels, J. L., Regular Variation, Encyclopedia of Mathematics and its Applications, Vol. 27, Cambridge University Press (1989). (1989) Zbl0667.26003MR1015093
  6. Birkhoff, G. D., Guenther, P. E., 10.1073/pnas.27.4.218, Proc. Natl. Acad. Sci. USA 27 (1941), 218-222. (1941) Zbl0061.20002MR0004047DOI10.1073/pnas.27.4.218
  7. Bohner, M., Peterson, A. C., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston (2001). (2001) Zbl0978.39001MR1843232
  8. Bohner, M., Ünal, M., 10.1088/0305-4470/38/30/008, J. Phys. A, Math. Gen. 38 (2005), 6729-6739. (2005) Zbl1080.39023MR2167223DOI10.1088/0305-4470/38/30/008
  9. Bojanić, R., Seneta, E., 10.1007/BF01214468, Math. Z. 134 (1973), 91-106. (1973) MR0333082DOI10.1007/BF01214468
  10. Carmichael, R. D., 10.2307/2369887, Amer. J. Math. 34 (1912), 147-168. (1912) MR1506145DOI10.2307/2369887
  11. Cheung, P., Kac, V., Quantum Calculus, Springer-Verlag, Berlin-Heidelberg-New York (2002). (2002) Zbl0986.05001MR1865777
  12. Vizio, L. Di, Ramis, J.-P., Sauloy, J., Zhang, C., Équations aux q -différences, Gaz. Math., Soc. Math. Fr. 96 (2003), 20-49. (2003) Zbl1063.39015MR1988639
  13. Ernst, T., 10.3176/proc.2008.2.03, Proc. Est. Acad. Sci. 57 (2008), 81-99. (2008) Zbl1161.33302MR2554406DOI10.3176/proc.2008.2.03
  14. Galambos, J., Seneta, E., 10.1090/S0002-9939-1973-0323963-5, Proc. Amer. Math. Soc. 41 (1973), 110-116. (1973) Zbl0247.26002MR0323963DOI10.1090/S0002-9939-1973-0323963-5
  15. Gasper, G., Rahman, M., Basic Hypergeometric Series, Second edition, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press (2004). (2004) Zbl1129.33005MR2128719
  16. Jackson, F. H., 10.2307/2370183, Amer. J. Math. 32 (1910), 305-314. (1910) MR1506108DOI10.2307/2370183
  17. Karamata, J., Sur certain ``Tauberian theorems'' de M. M. Hardy et Littlewood, Mathematica Cluj 3 (1930), 33-48. (1930) 
  18. Koornwinder, T. H., q-Special Functions, A Tutorial, Representations of Lie groups and quantum groups, V. Baldoni and M. A. Picardello Longman Scientific and Technical (1994), 46-128. (1994) MR1431306
  19. Caine, J. Le, 10.2307/2371867, Am. J. Math. 65 (1943), 585-600. (1943) Zbl0061.20003MR0008889DOI10.2307/2371867
  20. Marić, V., Regular Variation and Differential Equations, Lecture Notes in Mathematics. 1726, Springer-Verlag, Berlin-Heidelberg-New York (2000). (2000) MR1753584
  21. Matucci, S., Řehák, P., 10.1080/10236190701466728, J. Difference Equ. Appl. 14 (2008), 17-30. (2008) MR2378889DOI10.1080/10236190701466728
  22. Řehák, P., How the constants in Hille-Nehari theorems depend on time scales, Adv. Difference Equ. 2006 (2006), 1-15. (2006) MR2255171
  23. Řehák, P., Regular variation on time scales and dynamic equations, Aust. J. Math. Anal. Appl. 5 (2008), 1-10. (2008) MR2461676
  24. Řehák, P., Vítovec, J., 10.1088/1751-8113/41/49/495203, J. Phys. A, Math. Theor. 41 (2008), 1-10. (2008) MR2515897DOI10.1088/1751-8113/41/49/495203
  25. Řehák, P., Vítovec, J., 10.1016/j.na.2009.06.078, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Method. 72 (2010), 439-448. (2010) MR2574953DOI10.1016/j.na.2009.06.078
  26. Řehák, P., Vítovec, J., q -Karamata functions and second order q -difference equations, Electron. J. Qual. Theory Differ. Equ. 24 (2011), 20 pp. (2011) MR2786478
  27. Seneta, E., Regularly Varying Functions, Lecture Notes in Mathematics 508, Springer-Verlag, Berlin-Heidelberg-New York (1976). (1976) Zbl0324.26002MR0453936
  28. Swanson, C. A., Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York (1968). (1968) Zbl0191.09904MR0463570
  29. Trjitzinsky, W. J., 10.1007/BF02547785, Acta Math. 61 (1933), 1-38. (1933) Zbl0007.21103MR1555369DOI10.1007/BF02547785
  30. Put, M. van der, Reversat, M., 10.5802/afst.1164, Ann. Fac. Sci. Toulouse, Math. (6) 16 (2007), 665-718. (2007) MR2379057DOI10.5802/afst.1164

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.