# Second order linear $q$-difference equations: nonoscillation and asymptotics

Czechoslovak Mathematical Journal (2011)

- Volume: 61, Issue: 4, page 1107-1134
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topŘehák, Pavel. "Second order linear $q$-difference equations: nonoscillation and asymptotics." Czechoslovak Mathematical Journal 61.4 (2011): 1107-1134. <http://eudml.org/doc/197009>.

@article{Řehák2011,

abstract = {The paper can be understood as a completion of the $q$-Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear $q$-difference equations. The $q$-Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice $q^\{\mathbb \{N\}_0\}:=\lbrace q^k\colon k\in \mathbb \{N\}_0\rbrace $ with $q>1$. In addition to recalling the existing concepts of $q$-regular variation and $q$-rapid variation we introduce $q$-regularly bounded functions and prove many related properties. The $q$-Karamata theory is then applied to describe (in an exhaustive way) the asymptotic behavior as $t\rightarrow \infty $ of solutions to the $q$-difference equation $D_q^2y(t)+p(t)y(qt)=0$, where $p\colon \smash\{q^\{\mathbb \{N\}_0\}\}\rightarrow \mathbb \{R\}$. We also present the existing and some new criteria of Kneser type which are related to our subject. A comparison of our results with their continuous counterparts is made. It reveals interesting differences between the continuous case and the $q$-case and validates the fact that $q$-calculus is a natural setting for the Karamata like theory and provides a powerful tool in qualitative theory of dynamic equations.},

author = {Řehák, Pavel},

journal = {Czechoslovak Mathematical Journal},

keywords = {regularly varying functions; $q$-difference equations; asymptotic behavior; oscillation; regularly varying function; -difference equation; asymptotic behavior; oscillation},

language = {eng},

number = {4},

pages = {1107-1134},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Second order linear $q$-difference equations: nonoscillation and asymptotics},

url = {http://eudml.org/doc/197009},

volume = {61},

year = {2011},

}

TY - JOUR

AU - Řehák, Pavel

TI - Second order linear $q$-difference equations: nonoscillation and asymptotics

JO - Czechoslovak Mathematical Journal

PY - 2011

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 61

IS - 4

SP - 1107

EP - 1134

AB - The paper can be understood as a completion of the $q$-Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear $q$-difference equations. The $q$-Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice $q^{\mathbb {N}_0}:=\lbrace q^k\colon k\in \mathbb {N}_0\rbrace $ with $q>1$. In addition to recalling the existing concepts of $q$-regular variation and $q$-rapid variation we introduce $q$-regularly bounded functions and prove many related properties. The $q$-Karamata theory is then applied to describe (in an exhaustive way) the asymptotic behavior as $t\rightarrow \infty $ of solutions to the $q$-difference equation $D_q^2y(t)+p(t)y(qt)=0$, where $p\colon \smash{q^{\mathbb {N}_0}}\rightarrow \mathbb {R}$. We also present the existing and some new criteria of Kneser type which are related to our subject. A comparison of our results with their continuous counterparts is made. It reveals interesting differences between the continuous case and the $q$-case and validates the fact that $q$-calculus is a natural setting for the Karamata like theory and provides a powerful tool in qualitative theory of dynamic equations.

LA - eng

KW - regularly varying functions; $q$-difference equations; asymptotic behavior; oscillation; regularly varying function; -difference equation; asymptotic behavior; oscillation

UR - http://eudml.org/doc/197009

ER -

## References

top- Adams, C. R., 10.2307/1968274, Ann. of Math. 30 (1928/29), 195-205. (1928) MR1502876DOI10.2307/1968274
- Bangerezako, G., An Introduction to $q$-Difference Equations, Preprint, Bujumbura (2007). (2007)
- Baoguo, J., Erbe, L., Peterson, A. C., 10.1016/j.aml.2008.07.014, Appl. Math. Lett. 22 (2009), 871-875. (2009) Zbl1170.39002MR2523597DOI10.1016/j.aml.2008.07.014
- Bekker, M. B., Bohner, M. J., Herega, A. N., Voulov, H., 10.1088/1751-8113/43/14/145207, J. Phys. A, Math. Theor. 43 (2010), 15 pp. (2010) Zbl1192.39006MR2606438DOI10.1088/1751-8113/43/14/145207
- Bingham, N. H., Goldie, C. M., Teugels, J. L., Regular Variation, Encyclopedia of Mathematics and its Applications, Vol. 27, Cambridge University Press (1989). (1989) Zbl0667.26003MR1015093
- Birkhoff, G. D., Guenther, P. E., 10.1073/pnas.27.4.218, Proc. Natl. Acad. Sci. USA 27 (1941), 218-222. (1941) Zbl0061.20002MR0004047DOI10.1073/pnas.27.4.218
- Bohner, M., Peterson, A. C., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston (2001). (2001) Zbl0978.39001MR1843232
- Bohner, M., Ünal, M., 10.1088/0305-4470/38/30/008, J. Phys. A, Math. Gen. 38 (2005), 6729-6739. (2005) Zbl1080.39023MR2167223DOI10.1088/0305-4470/38/30/008
- Bojanić, R., Seneta, E., 10.1007/BF01214468, Math. Z. 134 (1973), 91-106. (1973) MR0333082DOI10.1007/BF01214468
- Carmichael, R. D., 10.2307/2369887, Amer. J. Math. 34 (1912), 147-168. (1912) MR1506145DOI10.2307/2369887
- Cheung, P., Kac, V., Quantum Calculus, Springer-Verlag, Berlin-Heidelberg-New York (2002). (2002) Zbl0986.05001MR1865777
- Vizio, L. Di, Ramis, J.-P., Sauloy, J., Zhang, C., Équations aux $q$-différences, Gaz. Math., Soc. Math. Fr. 96 (2003), 20-49. (2003) Zbl1063.39015MR1988639
- Ernst, T., 10.3176/proc.2008.2.03, Proc. Est. Acad. Sci. 57 (2008), 81-99. (2008) Zbl1161.33302MR2554406DOI10.3176/proc.2008.2.03
- Galambos, J., Seneta, E., 10.1090/S0002-9939-1973-0323963-5, Proc. Amer. Math. Soc. 41 (1973), 110-116. (1973) Zbl0247.26002MR0323963DOI10.1090/S0002-9939-1973-0323963-5
- Gasper, G., Rahman, M., Basic Hypergeometric Series, Second edition, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press (2004). (2004) Zbl1129.33005MR2128719
- Jackson, F. H., 10.2307/2370183, Amer. J. Math. 32 (1910), 305-314. (1910) MR1506108DOI10.2307/2370183
- Karamata, J., Sur certain ``Tauberian theorems'' de M. M. Hardy et Littlewood, Mathematica Cluj 3 (1930), 33-48. (1930)
- Koornwinder, T. H., q-Special Functions, A Tutorial, Representations of Lie groups and quantum groups, V. Baldoni and M. A. Picardello Longman Scientific and Technical (1994), 46-128. (1994) MR1431306
- Caine, J. Le, 10.2307/2371867, Am. J. Math. 65 (1943), 585-600. (1943) Zbl0061.20003MR0008889DOI10.2307/2371867
- Marić, V., Regular Variation and Differential Equations, Lecture Notes in Mathematics. 1726, Springer-Verlag, Berlin-Heidelberg-New York (2000). (2000) MR1753584
- Matucci, S., Řehák, P., 10.1080/10236190701466728, J. Difference Equ. Appl. 14 (2008), 17-30. (2008) MR2378889DOI10.1080/10236190701466728
- Řehák, P., How the constants in Hille-Nehari theorems depend on time scales, Adv. Difference Equ. 2006 (2006), 1-15. (2006) MR2255171
- Řehák, P., Regular variation on time scales and dynamic equations, Aust. J. Math. Anal. Appl. 5 (2008), 1-10. (2008) MR2461676
- Řehák, P., Vítovec, J., 10.1088/1751-8113/41/49/495203, J. Phys. A, Math. Theor. 41 (2008), 1-10. (2008) MR2515897DOI10.1088/1751-8113/41/49/495203
- Řehák, P., Vítovec, J., 10.1016/j.na.2009.06.078, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Method. 72 (2010), 439-448. (2010) MR2574953DOI10.1016/j.na.2009.06.078
- Řehák, P., Vítovec, J., $q$-Karamata functions and second order $q$-difference equations, Electron. J. Qual. Theory Differ. Equ. 24 (2011), 20 pp. (2011) MR2786478
- Seneta, E., Regularly Varying Functions, Lecture Notes in Mathematics 508, Springer-Verlag, Berlin-Heidelberg-New York (1976). (1976) Zbl0324.26002MR0453936
- Swanson, C. A., Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York (1968). (1968) Zbl0191.09904MR0463570
- Trjitzinsky, W. J., 10.1007/BF02547785, Acta Math. 61 (1933), 1-38. (1933) Zbl0007.21103MR1555369DOI10.1007/BF02547785
- Put, M. van der, Reversat, M., 10.5802/afst.1164, Ann. Fac. Sci. Toulouse, Math. (6) 16 (2007), 665-718. (2007) MR2379057DOI10.5802/afst.1164

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.