On some nonlinear partial differential equations involving the 1-Laplacian
Mouna Kraïem[1]
- [1] Université de Cergy Pontoise , Département de Mathématiques, 2, avenue Adolphe Chauvin, 95302 Cergy Pontoise Cedex, France
Annales de la faculté des sciences de Toulouse Mathématiques (2007)
- Volume: 16, Issue: 4, page 905-921
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topKraïem, Mouna. "On some nonlinear partial differential equations involving the 1-Laplacian." Annales de la faculté des sciences de Toulouse Mathématiques 16.4 (2007): 905-921. <http://eudml.org/doc/10073>.
@article{Kraïem2007,
abstract = {Let $\Omega $ be a smooth bounded domain in $\mathbb\{R\}^N, N>1$ and let $n\in \mathbb\{N\}^*$. We prove here the existence of nonnegative solutions $u_n$ in $BV(\Omega )$, to the problem\begin\{equation*\} (P\_n) \{\left\lbrace \begin\{array\}\{ll\} -\operatorname\{div\} \sigma +2n \left(\int \_ \Omega u -1 \right) \ \operatorname\{sign\}^+ \ (u)=0 & \text\{in \} \Omega ,\\[2mm] \sigma \cdot \nabla u= |\nabla u| & \text\{in \} \Omega ,\\[2mm] u \text\{ is not identically zero\}, -\sigma \cdot \overrightarrow\{n\} u=u & \text\{on \} \partial \Omega , \end\{array\}\right.\} \end\{equation*\}where $\overrightarrow\{n\}$ denotes the unit outer normal to $\partial \Omega $, and $\{\rm sign\}^+(u)$ denotes some $L^\{\infty \}(\Omega )$ function defined as:\[\{\rm sign\}^+ \ (u). u =u^+, \ 0 \le \{\rm sign\}^+(u) \le 1.\]Moreover, we prove the tight convergence of $u_n$ towards one of the first eingenfunctions for the first $1-$Laplacian Operator $-\Delta _1$ on $\Omega $ when $n$ goes to $+\infty $.},
affiliation = {Université de Cergy Pontoise , Département de Mathématiques, 2, avenue Adolphe Chauvin, 95302 Cergy Pontoise Cedex, France},
author = {Kraïem, Mouna},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {1-Laplacian; first eigenvalue; first eigenfunction; penalization method},
language = {eng},
number = {4},
pages = {905-921},
publisher = {Université Paul Sabatier, Toulouse},
title = {On some nonlinear partial differential equations involving the 1-Laplacian},
url = {http://eudml.org/doc/10073},
volume = {16},
year = {2007},
}
TY - JOUR
AU - Kraïem, Mouna
TI - On some nonlinear partial differential equations involving the 1-Laplacian
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 4
SP - 905
EP - 921
AB - Let $\Omega $ be a smooth bounded domain in $\mathbb{R}^N, N>1$ and let $n\in \mathbb{N}^*$. We prove here the existence of nonnegative solutions $u_n$ in $BV(\Omega )$, to the problem\begin{equation*} (P_n) {\left\lbrace \begin{array}{ll} -\operatorname{div} \sigma +2n \left(\int _ \Omega u -1 \right) \ \operatorname{sign}^+ \ (u)=0 & \text{in } \Omega ,\\[2mm] \sigma \cdot \nabla u= |\nabla u| & \text{in } \Omega ,\\[2mm] u \text{ is not identically zero}, -\sigma \cdot \overrightarrow{n} u=u & \text{on } \partial \Omega , \end{array}\right.} \end{equation*}where $\overrightarrow{n}$ denotes the unit outer normal to $\partial \Omega $, and ${\rm sign}^+(u)$ denotes some $L^{\infty }(\Omega )$ function defined as:\[{\rm sign}^+ \ (u). u =u^+, \ 0 \le {\rm sign}^+(u) \le 1.\]Moreover, we prove the tight convergence of $u_n$ towards one of the first eingenfunctions for the first $1-$Laplacian Operator $-\Delta _1$ on $\Omega $ when $n$ goes to $+\infty $.
LA - eng
KW - 1-Laplacian; first eigenvalue; first eigenfunction; penalization method
UR - http://eudml.org/doc/10073
ER -
References
top- Alter (F.), Cazelles (V.), Chambolle (A.).— A characterization of convex calibrable sets in , prepublication. Zbl1108.35073
- Alter (F.), Cazelles (V.), Chambolle (A.).— Evolution of convex sets in the plane by the minimizing total variation flow , Prépublication.
- Andreu (F.), Caselles (V.), Mazón (J. M.).— A strongly degenerate quasilinear elliptic equation, Nonlinear Anal. 61 , n 4, p. 637–669 (2005). Zbl1190.35100MR2126618
- Bellettini (G.), Caselles (V.), Novaga (M.).— Explicit solutions of the eigenvalue problem .
- Cheeger (J.).— A lower bound for the smallesteigenvalue of the Laplacian in Problems in Analysis, Symposium in honor of Salomon Bochner, Ed : RC Ganning, Princeton Univ. Press, p.195-199 (1970). Zbl0212.44903MR402831
- De Giorgi, Carriero (M.), Leaci (A.).— Existence Theorem for a minimum problem with a Free dicountinuity set, A.R.M.A, 108, p. 195-218 (1989). Zbl0682.49002MR1012174
- Demengel (F.).— On Some Nonlinear Partial Differential Equations Involving The 1-Laplacian and Critical Sobolev exponent, ESAIM: Control, Optimisation and Calculus of Variations, 4, p. 667-686 (1999). Zbl0939.35070MR1746172
- Demengel (F.).— Some compactness result for some spaces of functions with bounded derivatives, A.R.M.A. 105(2), p. 123-161 (1989). Zbl0669.73030MR968458
- Demengel (F.).— Théorèmes d’existence pour des équations avec l’opérateur -Laplacien, première valeur propre pour -, C.R Acad. Sci. Paris, Ser. I334, p. 1071-1076 (2002). Zbl1142.35408
- Demengel (F.).— Some existence’s results for noncoercive Laplacian operator, Asymptot. Anal. 43, no. 4, p. 287-322 (2005). Zbl1192.35036
- Demengel (F.).— Functions locally almost harmonic, Applicable Analysis, Vol.83, N°9, September 2004, p. 865-896. Zbl1135.35333MR2083734
- Demengel (F.).— On some nonlinear partial differential equations involving the "Laplacian " and critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 4, p. 667–686 (1999). Zbl0939.35070MR1746172
- Ekeland (I.), Temam (R.).— Convex Analysis and variational problems, North-Holland, 1976. Zbl0322.90046MR463994
- Giusti (E.).— Minimal surfaces and functions of bounded variation, Notes de cours rédigés pr G.H. Williams.Departement of Mathematics Australian National University, Canberra (1977), et Birkhauser (1984). Zbl0402.49033MR638362
- Giaquinta (M.), Modica (G.), and Soucek (J.).— Cartesian Currents in the Calculus of Variations I, LNM, Vol 37, Springer, 1997. Zbl0914.49001MR1645086
- Guedda (M.), Veron (L.).— Quasilinear elliptic equations involving critical sobolev exponents, Nonlinear Analysis, Theory, Methods and Applications, 13, p. 879-902 (1989). Zbl0714.35032MR1009077
- Kohn (R.V.), Temam (R.).— Dual spaces of stress and strains with applications to Hencky plasticity, Appl. Math. Optim (10), p. 1-35 (1983). Zbl0532.73039MR701898
- Lions (P.L.).— The concentration-compactness principle in the calculus of variations. The limit case, I et II. Rev. Mat. Iberoamericana 1, n 1, p. 145–201 (1985). Zbl0704.49005MR834360
- Strang (G.), Temam (R.).— Functions with bounded derivatives, A.R.M.A., p. 493-527 (1980). Zbl0465.73033MR595981
- Tolksdorf (P.).— Regularity for a more general class of quasilinear elliptic equations, Journal of Differential Equations, 51, p. 126-150 (1984). Zbl0488.35017MR727034
- Vazquez (J.L.).— A Strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, p. 191-202 (1984). Zbl0561.35003MR768629
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.