On some nonlinear partial differential equations involving the 1-Laplacian

Mouna Kraïem[1]

  • [1] Université de Cergy Pontoise , Département de Mathématiques, 2, avenue Adolphe Chauvin, 95302 Cergy Pontoise Cedex, France

Annales de la faculté des sciences de Toulouse Mathématiques (2007)

  • Volume: 16, Issue: 4, page 905-921
  • ISSN: 0240-2963

Abstract

top
Let Ω be a smooth bounded domain in N , N > 1 and let n * . We prove here the existence of nonnegative solutions u n in B V ( Ω ) , to the problem ( P n ) - div σ + 2 n Ω u - 1 sign + ( u ) = 0 in Ω , σ · u = | u | in Ω , u is not identically zero , - σ · n u = u on Ω , where n denotes the unit outer normal to Ω , and sign + ( u ) denotes some L ( Ω ) function defined as: sign + ( u ) . u = u + , 0 sign + ( u ) 1 . Moreover, we prove the tight convergence of u n towards one of the first eingenfunctions for the first 1 - Laplacian Operator - Δ 1 on Ω when n goes to + .

How to cite

top

Kraïem, Mouna. "On some nonlinear partial differential equations involving the 1-Laplacian." Annales de la faculté des sciences de Toulouse Mathématiques 16.4 (2007): 905-921. <http://eudml.org/doc/10073>.

@article{Kraïem2007,
abstract = {Let $\Omega $ be a smooth bounded domain in $\mathbb\{R\}^N, N&gt;1$ and let $n\in \mathbb\{N\}^*$. We prove here the existence of nonnegative solutions $u_n$ in $BV(\Omega )$, to the problem\begin\{equation*\} (P\_n) \{\left\lbrace \begin\{array\}\{ll\} -\operatorname\{div\} \sigma +2n \left(\int \_ \Omega u -1 \right) \ \operatorname\{sign\}^+ \ (u)=0 & \text\{in \} \Omega ,\\[2mm] \sigma \cdot \nabla u= |\nabla u| & \text\{in \} \Omega ,\\[2mm] u \text\{ is not identically zero\}, -\sigma \cdot \overrightarrow\{n\} u=u & \text\{on \} \partial \Omega , \end\{array\}\right.\} \end\{equation*\}where $\overrightarrow\{n\}$ denotes the unit outer normal to $\partial \Omega $, and $\{\rm sign\}^+(u)$ denotes some $L^\{\infty \}(\Omega )$ function defined as:\[\{\rm sign\}^+ \ (u). u =u^+, \ 0 \le \{\rm sign\}^+(u) \le 1.\]Moreover, we prove the tight convergence of $u_n$ towards one of the first eingenfunctions for the first $1-$Laplacian Operator $-\Delta _1$ on $\Omega $ when $n$ goes to $+\infty $.},
affiliation = {Université de Cergy Pontoise , Département de Mathématiques, 2, avenue Adolphe Chauvin, 95302 Cergy Pontoise Cedex, France},
author = {Kraïem, Mouna},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {1-Laplacian; first eigenvalue; first eigenfunction; penalization method},
language = {eng},
number = {4},
pages = {905-921},
publisher = {Université Paul Sabatier, Toulouse},
title = {On some nonlinear partial differential equations involving the 1-Laplacian},
url = {http://eudml.org/doc/10073},
volume = {16},
year = {2007},
}

TY - JOUR
AU - Kraïem, Mouna
TI - On some nonlinear partial differential equations involving the 1-Laplacian
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2007
PB - Université Paul Sabatier, Toulouse
VL - 16
IS - 4
SP - 905
EP - 921
AB - Let $\Omega $ be a smooth bounded domain in $\mathbb{R}^N, N&gt;1$ and let $n\in \mathbb{N}^*$. We prove here the existence of nonnegative solutions $u_n$ in $BV(\Omega )$, to the problem\begin{equation*} (P_n) {\left\lbrace \begin{array}{ll} -\operatorname{div} \sigma +2n \left(\int _ \Omega u -1 \right) \ \operatorname{sign}^+ \ (u)=0 & \text{in } \Omega ,\\[2mm] \sigma \cdot \nabla u= |\nabla u| & \text{in } \Omega ,\\[2mm] u \text{ is not identically zero}, -\sigma \cdot \overrightarrow{n} u=u & \text{on } \partial \Omega , \end{array}\right.} \end{equation*}where $\overrightarrow{n}$ denotes the unit outer normal to $\partial \Omega $, and ${\rm sign}^+(u)$ denotes some $L^{\infty }(\Omega )$ function defined as:\[{\rm sign}^+ \ (u). u =u^+, \ 0 \le {\rm sign}^+(u) \le 1.\]Moreover, we prove the tight convergence of $u_n$ towards one of the first eingenfunctions for the first $1-$Laplacian Operator $-\Delta _1$ on $\Omega $ when $n$ goes to $+\infty $.
LA - eng
KW - 1-Laplacian; first eigenvalue; first eigenfunction; penalization method
UR - http://eudml.org/doc/10073
ER -

References

top
  1. Alter (F.), Cazelles (V.), Chambolle (A.).— A characterization of convex calibrable sets in N , prepublication. Zbl1108.35073
  2. Alter (F.), Cazelles (V.), Chambolle (A.).— Evolution of convex sets in the plane by the minimizing total variation flow , Prépublication. 
  3. Andreu (F.), Caselles (V.), Mazón (J. M.).— A strongly degenerate quasilinear elliptic equation, Nonlinear Anal. 61 , n 4, p. 637–669 (2005). Zbl1190.35100MR2126618
  4. Bellettini (G.), Caselles (V.), Novaga (M.).— Explicit solutions of the eigenvalue problem - div ( D u | D u | ) = u
  5. Cheeger (J.).— A lower bound for the smallesteigenvalue of the Laplacian in Problems in Analysis, Symposium in honor of Salomon Bochner, Ed : RC Ganning, Princeton Univ. Press, p.195-199 (1970). Zbl0212.44903MR402831
  6. De Giorgi, Carriero (M.), Leaci (A.).— Existence Theorem for a minimum problem with a Free dicountinuity set, A.R.M.A, 108, p. 195-218 (1989). Zbl0682.49002MR1012174
  7. Demengel (F.).— On Some Nonlinear Partial Differential Equations Involving The 1-Laplacian and Critical Sobolev exponent, ESAIM: Control, Optimisation and Calculus of Variations, 4, p. 667-686 (1999). Zbl0939.35070MR1746172
  8. Demengel (F.).— Some compactness result for some spaces of functions with bounded derivatives, A.R.M.A. 105(2), p. 123-161 (1989). Zbl0669.73030MR968458
  9. Demengel (F.).— Théorèmes d’existence pour des équations avec l’opérateur 1 -Laplacien, première valeur propre pour - Δ 1 , C.R Acad. Sci. Paris, Ser. I334, p. 1071-1076 (2002). Zbl1142.35408
  10. Demengel (F.).— Some existence’s results for noncoercive 1 - Laplacian operator, Asymptot. Anal. 43, no. 4, p. 287-322 (2005). Zbl1192.35036
  11. Demengel (F.).— Functions locally almost 1 - harmonic, Applicable Analysis, Vol.83, N°9, September 2004, p. 865-896. Zbl1135.35333MR2083734
  12. Demengel (F.).— On some nonlinear partial differential equations involving the " 1 - Laplacian " and critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 4, p. 667–686 (1999). Zbl0939.35070MR1746172
  13. Ekeland (I.), Temam (R.).— Convex Analysis and variational problems, North-Holland, 1976. Zbl0322.90046MR463994
  14. Giusti (E.).— Minimal surfaces and functions of bounded variation, Notes de cours rédigés pr G.H. Williams.Departement of Mathematics Australian National University, Canberra (1977), et Birkhauser (1984). Zbl0402.49033MR638362
  15. Giaquinta (M.), Modica (G.), and Soucek (J.).— Cartesian Currents in the Calculus of Variations I, LNM, Vol 37, Springer, 1997. Zbl0914.49001MR1645086
  16. Guedda (M.), Veron (L.).— Quasilinear elliptic equations involving critical sobolev exponents, Nonlinear Analysis, Theory, Methods and Applications, 13, p. 879-902 (1989). Zbl0714.35032MR1009077
  17. Kohn (R.V.), Temam (R.).— Dual spaces of stress and strains with applications to Hencky plasticity, Appl. Math. Optim (10), p. 1-35 (1983). Zbl0532.73039MR701898
  18. Lions (P.L.).— The concentration-compactness principle in the calculus of variations. The limit case, I et II. Rev. Mat. Iberoamericana 1, n 1, p. 145–201 (1985). Zbl0704.49005MR834360
  19. Strang (G.), Temam (R.).— Functions with bounded derivatives, A.R.M.A., p. 493-527 (1980). Zbl0465.73033MR595981
  20. Tolksdorf (P.).— Regularity for a more general class of quasilinear elliptic equations, Journal of Differential Equations, 51, p. 126-150 (1984). Zbl0488.35017MR727034
  21. Vazquez (J.L.).— A Strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, p. 191-202 (1984). Zbl0561.35003MR768629

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.