Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ?
- [1] Laboratoire d’Analyse, Topologie, Probabilités, UMR 6632, Centre de Mathématiques et Informatique, Université de Provence et Centre National de la Recherche Scientifique, 39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 1, page 121-192
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Barthe (F.), Cattiaux (P.) et Roberto (C.).— Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry (2004). Zbl1118.26014
- Barthe (F.) et Roberto (C.).— Sobolev inequalities for probability measures on the real line, Studia Math., 159(3), p. 481–497 (2003). Dédicacé au Professeur Aleksander Pełczyński à l’occasion de son 70ième anniversaire (Polonais). Zbl1072.60008
- Bobkov (S. G.) et Götze (F.).— Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., 163(1), p. 1–28 (1999). Zbl0924.46027MR1682772
- Bobkov (S.G.) et Götze (F.).— Muckenhoupt’s condition via Riccati and Sturm-Liouville equations, Préprint (2002).
- Chafaï (D.).— Entropies, convexity, and functional inequalities, J. Math. Kyoto Univ., 44(2), p. 325–363 (2004). Zbl1079.26009MR2081075
- Chen (M.-F.).— From Markov chains to non-equilibrium particle systems, World Scientific Publishing Co. Inc., River Edge, NJ, second edition (2004). Zbl1078.60003MR2091955
- Chen (M.-F.).— Eigenvalues, inequalities, and ergodic theory, Probability and its Applications (New York), Springer-Verlag London Ltd., London (2005). Zbl1079.60005MR2105651
- Chung (K. L.) et Rao (K. M.).— Feynman-Kac functional and the Schrödinger equation, In Seminar on Stochastic Processes, 1981 (Evanston, Ill., 1981), volume 1 des Progr. Prob. Statist., pages 1–29. Birkhäuser Boston, Mass. (1981). Zbl0492.60073MR647779
- Chung (K. L.) et Williams (R. J.).— Introduction to stochastic integration, Probability and its Applications. Birkhäuser Boston Inc., Boston, MA, second edition (1990). Zbl0725.60050MR1102676
- Chung (K. L.) et Zhao (Z. X.).— From Brownian motion to Schrödinger’s equation, volume 312 des Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin (1995). Zbl0819.60068
- Colin de Verdière (Y.).— Spectres de graphes, volume 4 des Cours Spécialisés [Specialized Courses], Société Mathématique de France, Paris (1998). Zbl0913.05071MR1652692
- Courant (R.) et Hilbert (D.).— Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y. (1953). Zbl0051.28802MR65391
- Diaconis (P.) et Stroock (D).— Geometric bounds for eigenvalues of Markov chains, Ann. Appl. Probab., 1(1), p. 36–61 (1991). Zbl0731.60061MR1097463
- Donati-Martin (C.) et Yor (M.).— Mouvement brownien et inégalité de Hardy dans , In Séminaire de Probabilités, XXIII, volume 1372 des Lecture Notes in Math., pages 315–323, Springer, Berlin (1989). Zbl0739.60073MR1022919
- Dunford (N.) et Schwartz (J. T.).— Linear operators. Part II, Wiley Classics Library. John Wiley & Sons Inc., New York (1988), Spectral theory. Selfadjoint operators in Hilbert space, Avec l’assistance de William G. Bade et Robert G. Bartle, Réimpression de l’édition originale de 1963, Wiley-Interscience Publication. Zbl0635.47002
- Fukushima (M.), Ōshima (Y.) et Takeda (M.).— Dirichlet forms and symmetric Markov processes, volume 19 des de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin (1994). Zbl0838.31001MR1303354
- Gentil (I.), Guillin (A.) et Miclo (L.).— Modified logarithmic Sobolev inequalities and transportation inequalities, Préprint (2004). Zbl1080.26010MR2198019
- Glimm (J.) et Jaffe (A.).— Quantum physics, Springer-Verlag, New York, second edition (1987). A functional integral point of view. Zbl0461.46051MR887102
- Hardy (G. H.), Littlewood (J. E.) et Pólya (G.).— Inequalities, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Réimpression de l’édition de 1952. Zbl0634.26008
- Hartman (P.).— Ordinary differential equations, Birkhäuser Boston, Mass., second edition (1982). Zbl0476.34002MR658490
- Holley (R.) et Stroock (D.).— Simulated annealing via Sobolev inequalities, Comm. Math. Phys., 115(4), p. 553–569 (1988). Zbl0643.60092MR933455
- Holley (R.A.), Kusuoka (S.) et Stroock (D.W.).— Asymptotics of the spectral gap with applications to the theory of simulated annealing, J. Funct. Anal., 83(2), p. 333–347 (1989). Zbl0706.58075MR995752
- Kahale (N.).— A semidefinite bound for mixing rates of Markov chains, In Proceedings of the Workshop on Randomized Algorithms and Computation (Berkeley, CA, 1995), volume 11, pages 299–313 (1997). Zbl0889.90154MR1608821
- Kotani (S.) et Watanabe (S.).— Kreĭn’s spectral theory of strings and generalized diffusion processes, In Functional analysis in Markov processes (Katata/Kyoto, 1981), volume 923 des Lecture Notes in Math., pages 235–259, Springer, Berlin (1982). Zbl0496.60080
- Mansuy (R.).— On a one-parameter generalization of the Brownian bridge and associated quadratic functionals, J. Theoret. Probab., 17(4), p.1021–1029 (2004). Zbl1063.60049MR2105746
- Marcus (M.), Mizel (V.J.) et Pinchover (Y.).— On the best constant for Hardy’s inequality in , Trans. Amer. Math. Soc., 350(8), p. 3237–3255 (1998). Zbl0917.26016
- Matskewich (T.) et Sobolevskii (P.E.).— The best possible constant in generalized Hardy’s inequality for convex domain in , Nonlinear Anal., 28(9), p. 1601–1610 (1997). Zbl0876.46025
- Maz’ja (V.G.).— Sobolev spaces, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). Translated from the Russian by T. O. Shaposhnikova. Zbl0692.46023
- Miclo (L.).— An example of application of discrete Hardy’s inequalities, Markov Process. Related Fields, 5(3), p. 319–330 (1999). Zbl0942.60081
- Miclo (L.).— Une condition asymptotique pour le calcul de constantes de Sobolev logarithmiques sur la droite, Préprint soumis (2006).
- Muckenhoupt (B.).— Hardy’s inequality with weights, Studia Math., 44, p. 31–38 (1972). Collection d’articles honorant les 50 années d’activité scientifique d’Antoni Zygmund, I. Zbl0236.26015
- Neveu (J.).— Martingales à temps discret, Masson et Cie, éditeurs, Paris (1972). MR402914
- Peccati (G.) et Yor (M.).— Hardy’s inequality in and principal values of Brownian local times, Préprint (2001). Zbl1074.60029
- Peccati (G.) et Yor (M.).— Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge, Préprint à paraître dans Fields Institute Communications (2004). Zbl1071.60017MR2106849
- Pinsky (R.G.).— A spectral criterion for the finiteness or infiniteness of stopped Feynman-Kac functionals of diffusion processes, Ann. Probab., 14(4), p. 1180–1187 (1986). Zbl0611.60072MR866341
- Pinsky (R.G.).— Positive harmonic functions and diffusion, volume 45 des Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1995). Zbl0858.31001MR1326606
- Pitman (J.) et Yor (M.).— A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete, 59(4), p. 425–457 (1982). Zbl0484.60062MR656509
- Pitman (J.) et Yor (M.).— Sur une décomposition des ponts de Bessel, In Functional analysis in Markov processes (Katata/Kyoto, 1981), volume 923 des Lecture Notes in Math., pages 276–285, Springer, Berlin (1982). Zbl0499.60082MR661630
- Reed (M.) et Simon (B.).— Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978). Zbl0401.47001MR493421
- Revuz (D.) et Yor (M.).— Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, third edition (1999). Zbl0917.60006MR1725357
- Rudin (W.).— Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987. Zbl0925.00005MR924157
- Saloff-Coste (L.).— Lectures on finite Markov chains. In Lectures on probability theory and statistics (Saint-Flour, 1996), volume 1665 des Lecture Notes in Math., pages 301–413, Springer, Berlin (1997). Zbl0885.60061MR1490046
- Sinnamon (G.).— Four questions related to Hardy’s inequality, In Function spaces and applications (Delhi, 1997), pages 255–266. Narosa, New Delhi (2000). Zbl1006.26013
- Yor (M.).— Some aspects of Brownian motion. Part I, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1992). Some special functionals. Zbl0779.60070MR1193919