Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ?

Laurent Miclo[1]

  • [1] Laboratoire d’Analyse, Topologie, Probabilités, UMR 6632, Centre de Mathématiques et Informatique, Université de Provence et Centre National de la Recherche Scientifique, 39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 1, page 121-192
  • ISSN: 0240-2963

Abstract

top
Classically, Hardy’s inequality enables to estimate the spectral gap of a one-dimensional diffusion up to a factor belonging to [ 1 , 4 ] . The goal of this paper is to better understand the latter factor, at least in a symmetric setting. In particular, we will give an asymptotical criterion implying that its value is exactly 4. The underlying argument is based on a semi-explicit functional for the spectral gap, which is monotone in some rearrangement of the data. To find it will resort to some regularity properties of Poincaré’s constant and we will exhibit some links, more or less already known, with path methods, principal Dirichlet eigenvalues, Sturm-Liouville’s equations and Brownian functionals. Finally, we will extend the investigation to the case of birth and death processes on , still in a symmetric context. We hope this approach can be extended to more difficult functional inequalities.

How to cite

top

Miclo, Laurent. "Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ?." Annales de la faculté des sciences de Toulouse Mathématiques 17.1 (2008): 121-192. <http://eudml.org/doc/10075>.

@article{Miclo2008,
abstract = {Classically, Hardy’s inequality enables to estimate the spectral gap of a one-dimensional diffusion up to a factor belonging to $[1,4]$. The goal of this paper is to better understand the latter factor, at least in a symmetric setting. In particular, we will give an asymptotical criterion implying that its value is exactly 4. The underlying argument is based on a semi-explicit functional for the spectral gap, which is monotone in some rearrangement of the data. To find it will resort to some regularity properties of Poincaré’s constant and we will exhibit some links, more or less already known, with path methods, principal Dirichlet eigenvalues, Sturm-Liouville’s equations and Brownian functionals. Finally, we will extend the investigation to the case of birth and death processes on $\mathbb\{Z\}$, still in a symmetric context. We hope this approach can be extended to more difficult functional inequalities.},
affiliation = {Laboratoire d’Analyse, Topologie, Probabilités, UMR 6632, Centre de Mathématiques et Informatique, Université de Provence et Centre National de la Recherche Scientifique, 39, rue F. Joliot-Curie, 13453 Marseille cedex 13, France},
author = {Miclo, Laurent},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Poincaré inequality; Hardy's inequality; path methods; principal Dirichlet eigenvalue; Sturm-Liouville equation; Brownian functionals},
language = {eng},
month = {6},
number = {1},
pages = {121-192},
publisher = {Université Paul Sabatier, Toulouse},
title = {Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ?},
url = {http://eudml.org/doc/10075},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Miclo, Laurent
TI - Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ?
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 1
SP - 121
EP - 192
AB - Classically, Hardy’s inequality enables to estimate the spectral gap of a one-dimensional diffusion up to a factor belonging to $[1,4]$. The goal of this paper is to better understand the latter factor, at least in a symmetric setting. In particular, we will give an asymptotical criterion implying that its value is exactly 4. The underlying argument is based on a semi-explicit functional for the spectral gap, which is monotone in some rearrangement of the data. To find it will resort to some regularity properties of Poincaré’s constant and we will exhibit some links, more or less already known, with path methods, principal Dirichlet eigenvalues, Sturm-Liouville’s equations and Brownian functionals. Finally, we will extend the investigation to the case of birth and death processes on $\mathbb{Z}$, still in a symmetric context. We hope this approach can be extended to more difficult functional inequalities.
LA - eng
KW - Poincaré inequality; Hardy's inequality; path methods; principal Dirichlet eigenvalue; Sturm-Liouville equation; Brownian functionals
UR - http://eudml.org/doc/10075
ER -

References

top
  1. Barthe (F.), Cattiaux (P.) et Roberto (C.).— Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry (2004). Zbl1118.26014
  2. Barthe (F.) et Roberto (C.).— Sobolev inequalities for probability measures on the real line, Studia Math., 159(3), p. 481–497 (2003). Dédicacé au Professeur Aleksander Pełczyński à l’occasion de son 70ième anniversaire (Polonais). Zbl1072.60008
  3. Bobkov (S. G.) et Götze (F.).— Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., 163(1), p. 1–28 (1999). Zbl0924.46027MR1682772
  4. Bobkov (S.G.) et Götze (F.).— Muckenhoupt’s condition via Riccati and Sturm-Liouville equations, Préprint (2002). 
  5. Chafaï (D.).— Entropies, convexity, and functional inequalities, J. Math. Kyoto Univ., 44(2), p. 325–363 (2004). Zbl1079.26009MR2081075
  6. Chen (M.-F.).— From Markov chains to non-equilibrium particle systems, World Scientific Publishing Co. Inc., River Edge, NJ, second edition (2004). Zbl1078.60003MR2091955
  7. Chen (M.-F.).— Eigenvalues, inequalities, and ergodic theory, Probability and its Applications (New York), Springer-Verlag London Ltd., London (2005). Zbl1079.60005MR2105651
  8. Chung (K. L.) et Rao (K. M.).— Feynman-Kac functional and the Schrödinger equation, In Seminar on Stochastic Processes, 1981 (Evanston, Ill., 1981), volume 1 des Progr. Prob. Statist., pages 1–29. Birkhäuser Boston, Mass. (1981). Zbl0492.60073MR647779
  9. Chung (K. L.) et Williams (R. J.).— Introduction to stochastic integration, Probability and its Applications. Birkhäuser Boston Inc., Boston, MA, second edition (1990). Zbl0725.60050MR1102676
  10. Chung (K. L.) et Zhao (Z. X.).— From Brownian motion to Schrödinger’s equation, volume 312 des Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin (1995). Zbl0819.60068
  11. Colin de Verdière (Y.).— Spectres de graphes, volume 4 des Cours Spécialisés [Specialized Courses], Société Mathématique de France, Paris (1998). Zbl0913.05071MR1652692
  12. Courant (R.) et Hilbert (D.).— Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y. (1953). Zbl0051.28802MR65391
  13. Diaconis (P.) et Stroock (D).— Geometric bounds for eigenvalues of Markov chains, Ann. Appl. Probab., 1(1), p. 36–61 (1991). Zbl0731.60061MR1097463
  14. Donati-Martin (C.) et Yor (M.).— Mouvement brownien et inégalité de Hardy dans L 2 , In Séminaire de Probabilités, XXIII, volume 1372 des Lecture Notes in Math., pages 315–323, Springer, Berlin (1989). Zbl0739.60073MR1022919
  15. Dunford (N.) et Schwartz (J. T.).— Linear operators. Part II, Wiley Classics Library. John Wiley & Sons Inc., New York (1988), Spectral theory. Selfadjoint operators in Hilbert space, Avec l’assistance de William G. Bade et Robert G. Bartle, Réimpression de l’édition originale de 1963, Wiley-Interscience Publication. Zbl0635.47002
  16. Fukushima (M.), Ōshima (Y.) et Takeda (M.).— Dirichlet forms and symmetric Markov processes, volume 19 des de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin (1994). Zbl0838.31001MR1303354
  17. Gentil (I.), Guillin (A.) et Miclo (L.).— Modified logarithmic Sobolev inequalities and transportation inequalities, Préprint (2004). Zbl1080.26010MR2198019
  18. Glimm (J.) et Jaffe (A.).— Quantum physics, Springer-Verlag, New York, second edition (1987). A functional integral point of view. Zbl0461.46051MR887102
  19. Hardy (G. H.), Littlewood (J. E.) et Pólya (G.).— Inequalities, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Réimpression de l’édition de 1952. Zbl0634.26008
  20. Hartman (P.).— Ordinary differential equations, Birkhäuser Boston, Mass., second edition (1982). Zbl0476.34002MR658490
  21. Holley (R.) et Stroock (D.).— Simulated annealing via Sobolev inequalities, Comm. Math. Phys., 115(4), p. 553–569 (1988). Zbl0643.60092MR933455
  22. Holley (R.A.), Kusuoka (S.) et Stroock (D.W.).— Asymptotics of the spectral gap with applications to the theory of simulated annealing, J. Funct. Anal., 83(2), p. 333–347 (1989). Zbl0706.58075MR995752
  23. Kahale (N.).— A semidefinite bound for mixing rates of Markov chains, In Proceedings of the Workshop on Randomized Algorithms and Computation (Berkeley, CA, 1995), volume 11, pages 299–313 (1997). Zbl0889.90154MR1608821
  24. Kotani (S.) et Watanabe (S.).— Kreĭn’s spectral theory of strings and generalized diffusion processes, In Functional analysis in Markov processes (Katata/Kyoto, 1981), volume 923 des Lecture Notes in Math., pages 235–259, Springer, Berlin (1982). Zbl0496.60080
  25. Mansuy (R.).— On a one-parameter generalization of the Brownian bridge and associated quadratic functionals, J. Theoret. Probab., 17(4), p.1021–1029 (2004). Zbl1063.60049MR2105746
  26. Marcus (M.), Mizel (V.J.) et Pinchover (Y.).— On the best constant for Hardy’s inequality in R n , Trans. Amer. Math. Soc., 350(8), p. 3237–3255 (1998). Zbl0917.26016
  27. Matskewich (T.) et Sobolevskii (P.E.).— The best possible constant in generalized Hardy’s inequality for convex domain in R n , Nonlinear Anal., 28(9), p. 1601–1610 (1997). Zbl0876.46025
  28. Maz’ja (V.G.).— Sobolev spaces, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). Translated from the Russian by T. O. Shaposhnikova. Zbl0692.46023
  29. Miclo (L.).— An example of application of discrete Hardy’s inequalities, Markov Process. Related Fields, 5(3), p. 319–330 (1999). Zbl0942.60081
  30. Miclo (L.).— Une condition asymptotique pour le calcul de constantes de Sobolev logarithmiques sur la droite, Préprint soumis (2006). 
  31. Muckenhoupt (B.).— Hardy’s inequality with weights, Studia Math., 44, p. 31–38 (1972). Collection d’articles honorant les 50 années d’activité scientifique d’Antoni Zygmund, I. Zbl0236.26015
  32. Neveu (J.).— Martingales à temps discret, Masson et Cie, éditeurs, Paris (1972). MR402914
  33. Peccati (G.) et Yor (M.).— Hardy’s inequality in L 2 ( [ 0 , 1 ] ) and principal values of Brownian local times, Préprint (2001). Zbl1074.60029
  34. Peccati (G.) et Yor (M.).— Four limit theorems for quadratic functionals of Brownian motion and Brownian bridge, Préprint à paraître dans Fields Institute Communications (2004). Zbl1071.60017MR2106849
  35. Pinsky (R.G.).— A spectral criterion for the finiteness or infiniteness of stopped Feynman-Kac functionals of diffusion processes, Ann. Probab., 14(4), p. 1180–1187 (1986). Zbl0611.60072MR866341
  36. Pinsky (R.G.).— Positive harmonic functions and diffusion, volume 45 des Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1995). Zbl0858.31001MR1326606
  37. Pitman (J.) et Yor (M.).— A decomposition of Bessel bridges, Z. Wahrsch. Verw. Gebiete, 59(4), p. 425–457 (1982). Zbl0484.60062MR656509
  38. Pitman (J.) et Yor (M.).— Sur une décomposition des ponts de Bessel, In Functional analysis in Markov processes (Katata/Kyoto, 1981), volume 923 des Lecture Notes in Math., pages 276–285, Springer, Berlin (1982). Zbl0499.60082MR661630
  39. Reed (M.) et Simon (B.).— Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978). Zbl0401.47001MR493421
  40. Revuz (D.) et Yor (M.).— Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, third edition (1999). Zbl0917.60006MR1725357
  41. Rudin (W.).— Real and complex analysis. McGraw-Hill Book Co., New York, third edition, 1987. Zbl0925.00005MR924157
  42. Saloff-Coste (L.).— Lectures on finite Markov chains. In Lectures on probability theory and statistics (Saint-Flour, 1996), volume 1665 des Lecture Notes in Math., pages 301–413, Springer, Berlin (1997). Zbl0885.60061MR1490046
  43. Sinnamon (G.).— Four questions related to Hardy’s inequality, In Function spaces and applications (Delhi, 1997), pages 255–266. Narosa, New Delhi (2000). Zbl1006.26013
  44. Yor (M.).— Some aspects of Brownian motion. Part I, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1992). Some special functionals. Zbl0779.60070MR1193919

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.