On the small maximal flows in first passage percolation
Marie Théret[1]
- [1] Laboratoire de Mathémathiques d’Orsay, Université de Paris-Sud 11, bâtiment 425, 91405 Orsay cedex, France
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 1, page 207-219
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aizenman (M.), Chayes (J. T.), Chayes (L.), Fröhlich (J.), and Russo (L.).— On a sharp transition from area law to perimeter law in a system of random surfaces. Communications in Mathematical Physics, 92:19-69, 1983. Zbl0529.60099MR728447
- Bollobás (B.).— Graph theory, volume 63 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1979. An introductory course. Zbl0411.05032MR536131
- Cerf (R.).— The Wulff crystal in Ising and percolation models. In École d’Été de Probabilités de Saint Flour, number 1878 in Lecture Notes in Mathematics. Springer-Verlag, 2006. Zbl1103.82010
- Chayes (J. T.) and Chayes (L.).— Bulk transport properties and exponent inequalities for random resistor and flow networks. Communications in Mathematical Physics, 105:133-152, 1986. Zbl0617.60099MR847132
- Kesten (H.).— Aspects of first passage percolation.— In École d’Été de Probabilités de Saint Flour XIV, number 1180 in Lecture Notes in Mathematics. Springer-Verlag, 1984. Zbl0602.60098
- Kesten (H.).— Surfaces with minimal random weights and maximal flows: a higher dimensional version of first-passage percolation. Illinois Journal of Mathematics, 31(1):99-166, 1987. Zbl0591.60096MR869483
- Liggett (T. M.), Schonmann (R. H.), and Stacey (A. M.).— Domination by product measures. The Annals of Probability, 25(1):71-95, 1997. Zbl0882.60046MR1428500
- Pisztora (A.).— Surface order large deviations for Ising, Potts and percolation models. Probability Theory and Related Fields, 104(4):427-466, 1996. Zbl0842.60022MR1384040
- Zhang (Y.).— Critical behavior for maximal flows on the cubic lattice. Journal of Statistical Physics, 98(3-4):799-811, 2000. Zbl0991.82019MR1749233