Page 1 Next

Displaying 1 – 20 of 581

Showing per page

A comprehensive proof of localization for continuous Anderson models with singular random potentials

François Germinet, Abel Klein (2013)

Journal of the European Mathematical Society

We study continuous Anderson Hamiltonians with non-degenerate single site probability distribution of bounded support, without any regularity condition on the single site probability distribution. We prove the existence of a strong form of localization at the bottom of the spectrum, which includes Anderson localization (pure point spectrum with exponentially decaying eigenfunctions) with finite multiplicity of eigenvalues, dynamical localization (no spreading of wave packets under the time evolution),...

A lattice gas model for the incompressible Navier–Stokes equation

J. Beltrán, C. Landim (2008)

Annales de l'I.H.P. Probabilités et statistiques

We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.

A nonasymptotic theorem for unnormalized Feynman–Kac particle models

F. Cérou, P. Del Moral, A. Guyader (2011)

Annales de l'I.H.P. Probabilités et statistiques

We present a nonasymptotic theorem for interacting particle approximations of unnormalized Feynman–Kac models. We provide an original stochastic analysis-based on Feynman–Kac semigroup techniques combined with recently developed coalescent tree-based functional representations of particle block distributions. We present some regularity conditions under which the -relative error of these weighted particle measures grows linearly with respect to the time horizon yielding what seems to be the first...

Currently displaying 1 – 20 of 581

Page 1 Next