The Joly–Becker theorem for * –orderings

Igor Klep[1]; Dejan Velušček[2]

  • [1] Univerza v Ljubljani, Oddelek za matematiko Inštituta za matematiko, fiziko in mehaniko, Jadranska 19, SI–1111 Ljubljana, Slovenia
  • [2] University of Ljubljana, Faculty of Mathematics and Physics, Department of Mathematics, Jadranska 19, SI–1000 Ljubljana, Slovenia.

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 1, page 81-92
  • ISSN: 0240-2963

Abstract

top
We prove the * –version of the Joly–Becker theorem: a skew field admits a * –ordering of level n iff it admits a * –ordering of level n for some (resp. all) odd . For skew fields with an imaginary unit and fields stronger results are given: a skew field with imaginary unit that admits a * –ordering of higher level also admits a * –ordering of level 1 . Every field that admits a * –ordering of higher level admits a * –ordering of level 1 or 2

How to cite

top

Klep, Igor, and Velušček, Dejan. "The Joly–Becker theorem for $*$–orderings." Annales de la faculté des sciences de Toulouse Mathématiques 17.1 (2008): 81-92. <http://eudml.org/doc/10083>.

@article{Klep2008,
abstract = {We prove the $*$–version of the Joly–Becker theorem: a skew field admits a $*$–ordering of level $n$ iff it admits a $*$–ordering of level $n \ell $ for some (resp. all) odd $\ell \in \mathbb\{N\}$. For skew fields with an imaginary unit and fields stronger results are given: a skew field with imaginary unit that admits a $*$–ordering of higher level also admits a $*$–ordering of level $1$. Every field that admits a $*$–ordering of higher level admits a $*$–ordering of level $1$ or $2$},
affiliation = {Univerza v Ljubljani, Oddelek za matematiko Inštituta za matematiko, fiziko in mehaniko, Jadranska 19, SI–1111 Ljubljana, Slovenia; University of Ljubljana, Faculty of Mathematics and Physics, Department of Mathematics, Jadranska 19, SI–1000 Ljubljana, Slovenia.},
author = {Klep, Igor, Velušček, Dejan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {6},
number = {1},
pages = {81-92},
publisher = {Université Paul Sabatier, Toulouse},
title = {The Joly–Becker theorem for $*$–orderings},
url = {http://eudml.org/doc/10083},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Klep, Igor
AU - Velušček, Dejan
TI - The Joly–Becker theorem for $*$–orderings
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 1
SP - 81
EP - 92
AB - We prove the $*$–version of the Joly–Becker theorem: a skew field admits a $*$–ordering of level $n$ iff it admits a $*$–ordering of level $n \ell $ for some (resp. all) odd $\ell \in \mathbb{N}$. For skew fields with an imaginary unit and fields stronger results are given: a skew field with imaginary unit that admits a $*$–ordering of higher level also admits a $*$–ordering of level $1$. Every field that admits a $*$–ordering of higher level admits a $*$–ordering of level $1$ or $2$
LA - eng
UR - http://eudml.org/doc/10083
ER -

References

top
  1. Becker (E.).— Summen n -ter Potenzen in Körpern, J. Reine Angew. Math.307/308, p. 8-30 (1979). Zbl0398.12012MR534211
  2. Becker (E.), Harman (J.), Rosenberg (A.).— Signatures of fields and extension theory, J. Reine Angew. Math.330, p. 53-75 (1982). Zbl0466.12007MR641811
  3. Cimprič (J.).— Higher product levels of noncommutative rings, Comm. Algebra29, p. 193-200 (2001). Zbl0996.16028MR1842491
  4. Cimprič (J.).— Valuation theory of higher level * -signatures, J. Pure Appl. Algebra194, p. 239-262 (2004). Zbl1159.12304MR2087020
  5. Cimprič (J.), Velušček (D.).— Higher product levels of domains, J. Pure Appl. Algebra198, p. 67-74 (2005). Zbl1140.12300MR2132874
  6. Craven (T.).— Witt rings and orderings of skew fields, J. Algebra77, p. 74-96 (1982). Zbl0493.10026MR665165
  7. Craven (T.).— Approximation properties for orderings on * -fields, Trans. Amer. Math. Soc.310, no. 2, p. 837-850 (1988). Zbl0706.12005MR973179
  8. Craven (T.).— Orderings and valuations on * -fields, Rocky Mountain J. Math.19, p. 629-646 (1989). Zbl0702.16007MR1043236
  9. Craven (T.), Smith (T.).— Ordered * -rings, J. Algebra238, p. 314-327 (2001). Zbl0994.16029MR1822194
  10. Endler (O.).— Valuation Theory, Springer-Verlag, 1972. Zbl0257.12111MR357379
  11. Holland (S.).— * -valuations and ordered * -fields, Trans. Amer. Math. Soc.262, p. 219-243 (1980). Zbl0482.12009MR583853
  12. Holland (S.).— Strong orderings on * -fields, J. Algebra101, p. 16-46 (1986). Zbl0624.06024MR843688
  13. Joly (J.-R.).— Sommes de puissances d -iemes dans un anneau commutatif (French), Acta Arith.17, p. 37-114 (1970). Zbl0206.34001MR263779
  14. Klep (I.).— On valuations, places and graded rings associated to * -orderings, Canad. Math. Bull.50, p. 105-112 (2007). Zbl1161.14040MR2296629
  15. Klep (I.), Velušček (D.).— n -real valuations and the higher level version of the Krull-Baer theorem, J. Algebra279, p. 345-361 (2004). Zbl1066.16050MR2078405
  16. Klep (I.), Velušček (D.).— Central extensions of * -ordered skew fields, Manuscripta Math.120, 391-402 (2006). Zbl1109.06013MR2245890
  17. Marshall (M.).— * -orderings on a ring with involution, Comm. Algebra28, p. 1157-1173 (2000). Zbl0955.16029MR1742648
  18. Marshall (M.).— * -orderings and * -valuations on algebras of finite Gelfand-Kirillov dimension, J. Pure Appl. Algebra179, p. 252-271 (2003). Zbl1052.16021MR1960134
  19. Morandi (P.).— The Henselianization of a valued division algebra, J. Algebra122, 232-243 (1989). Zbl0676.16017MR994945
  20. Powers (V.).— Higher level reduced Witt rings of skew fields, Math. Z.198, p. 545-554 (1988). Zbl0627.10014MR950582
  21. Powers (V.).— Holomorphy rings and higher level orders on skew fields, J. Algebra136, p. 51-59 (1991). Zbl0715.12002MR1085119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.