The Joly–Becker theorem for –orderings
Igor Klep[1]; Dejan Velušček[2]
- [1] Univerza v Ljubljani, Oddelek za matematiko Inštituta za matematiko, fiziko in mehaniko, Jadranska 19, SI–1111 Ljubljana, Slovenia
- [2] University of Ljubljana, Faculty of Mathematics and Physics, Department of Mathematics, Jadranska 19, SI–1000 Ljubljana, Slovenia.
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 1, page 81-92
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topKlep, Igor, and Velušček, Dejan. "The Joly–Becker theorem for $*$–orderings." Annales de la faculté des sciences de Toulouse Mathématiques 17.1 (2008): 81-92. <http://eudml.org/doc/10083>.
@article{Klep2008,
abstract = {We prove the $*$–version of the Joly–Becker theorem: a skew field admits a $*$–ordering of level $n$ iff it admits a $*$–ordering of level $n \ell $ for some (resp. all) odd $\ell \in \mathbb\{N\}$. For skew fields with an imaginary unit and fields stronger results are given: a skew field with imaginary unit that admits a $*$–ordering of higher level also admits a $*$–ordering of level $1$. Every field that admits a $*$–ordering of higher level admits a $*$–ordering of level $1$ or $2$},
affiliation = {Univerza v Ljubljani, Oddelek za matematiko Inštituta za matematiko, fiziko in mehaniko, Jadranska 19, SI–1111 Ljubljana, Slovenia; University of Ljubljana, Faculty of Mathematics and Physics, Department of Mathematics, Jadranska 19, SI–1000 Ljubljana, Slovenia.},
author = {Klep, Igor, Velušček, Dejan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {6},
number = {1},
pages = {81-92},
publisher = {Université Paul Sabatier, Toulouse},
title = {The Joly–Becker theorem for $*$–orderings},
url = {http://eudml.org/doc/10083},
volume = {17},
year = {2008},
}
TY - JOUR
AU - Klep, Igor
AU - Velušček, Dejan
TI - The Joly–Becker theorem for $*$–orderings
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 1
SP - 81
EP - 92
AB - We prove the $*$–version of the Joly–Becker theorem: a skew field admits a $*$–ordering of level $n$ iff it admits a $*$–ordering of level $n \ell $ for some (resp. all) odd $\ell \in \mathbb{N}$. For skew fields with an imaginary unit and fields stronger results are given: a skew field with imaginary unit that admits a $*$–ordering of higher level also admits a $*$–ordering of level $1$. Every field that admits a $*$–ordering of higher level admits a $*$–ordering of level $1$ or $2$
LA - eng
UR - http://eudml.org/doc/10083
ER -
References
top- Becker (E.).— Summen -ter Potenzen in Körpern, J. Reine Angew. Math.307/308, p. 8-30 (1979). Zbl0398.12012MR534211
- Becker (E.), Harman (J.), Rosenberg (A.).— Signatures of fields and extension theory, J. Reine Angew. Math.330, p. 53-75 (1982). Zbl0466.12007MR641811
- Cimprič (J.).— Higher product levels of noncommutative rings, Comm. Algebra29, p. 193-200 (2001). Zbl0996.16028MR1842491
- Cimprič (J.).— Valuation theory of higher level -signatures, J. Pure Appl. Algebra194, p. 239-262 (2004). Zbl1159.12304MR2087020
- Cimprič (J.), Velušček (D.).— Higher product levels of domains, J. Pure Appl. Algebra198, p. 67-74 (2005). Zbl1140.12300MR2132874
- Craven (T.).— Witt rings and orderings of skew fields, J. Algebra77, p. 74-96 (1982). Zbl0493.10026MR665165
- Craven (T.).— Approximation properties for orderings on -fields, Trans. Amer. Math. Soc.310, no. 2, p. 837-850 (1988). Zbl0706.12005MR973179
- Craven (T.).— Orderings and valuations on -fields, Rocky Mountain J. Math.19, p. 629-646 (1989). Zbl0702.16007MR1043236
- Craven (T.), Smith (T.).— Ordered -rings, J. Algebra238, p. 314-327 (2001). Zbl0994.16029MR1822194
- Endler (O.).— Valuation Theory, Springer-Verlag, 1972. Zbl0257.12111MR357379
- Holland (S.).— -valuations and ordered -fields, Trans. Amer. Math. Soc.262, p. 219-243 (1980). Zbl0482.12009MR583853
- Holland (S.).— Strong orderings on -fields, J. Algebra101, p. 16-46 (1986). Zbl0624.06024MR843688
- Joly (J.-R.).— Sommes de puissances -iemes dans un anneau commutatif (French), Acta Arith.17, p. 37-114 (1970). Zbl0206.34001MR263779
- Klep (I.).— On valuations, places and graded rings associated to -orderings, Canad. Math. Bull.50, p. 105-112 (2007). Zbl1161.14040MR2296629
- Klep (I.), Velušček (D.).— -real valuations and the higher level version of the Krull-Baer theorem, J. Algebra279, p. 345-361 (2004). Zbl1066.16050MR2078405
- Klep (I.), Velušček (D.).— Central extensions of -ordered skew fields, Manuscripta Math.120, 391-402 (2006). Zbl1109.06013MR2245890
- Marshall (M.).— -orderings on a ring with involution, Comm. Algebra28, p. 1157-1173 (2000). Zbl0955.16029MR1742648
- Marshall (M.).— -orderings and -valuations on algebras of finite Gelfand-Kirillov dimension, J. Pure Appl. Algebra179, p. 252-271 (2003). Zbl1052.16021MR1960134
- Morandi (P.).— The Henselianization of a valued division algebra, J. Algebra122, 232-243 (1989). Zbl0676.16017MR994945
- Powers (V.).— Higher level reduced Witt rings of skew fields, Math. Z.198, p. 545-554 (1988). Zbl0627.10014MR950582
- Powers (V.).— Holomorphy rings and higher level orders on skew fields, J. Algebra136, p. 51-59 (1991). Zbl0715.12002MR1085119
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.