Page 1 Next

Displaying 1 – 20 of 151

Showing per page

A note on the p-distributivity in non-Archimedean f-rings.

Joan Trías Pairó (1980)

Stochastica

Non-Archimedean f-rings need not be p-distributive. Moreover, if {di|i} is a subset of a non-Archimedean f-ring and a ≥ 0, the elements a vi di and vi adi need not be equal. We prove, however, that the difference is an infinitely small element when the ring has a strong unity.

Algebras and spaces of dense constancies

Angelo Bella, Jorge Martinez, Scott D. Woodward (2001)

Czechoslovak Mathematical Journal

A DC-space (or space of dense constancies) is a Tychonoff space X such that for each f C ( X ) there is a family of open sets { U i i I } , the union of which is dense in X , such that f , restricted to each U i , is constant. A number of characterizations of DC-spaces are given, which lead to an algebraic generalization of the concept, which, in turn, permits analysis of DC-spaces in the language of archimedean f -algebras. One is led naturally to the notion of an almost DC-space (in which the densely constant functions...

Arens regularity of lattice-ordered rings

Karim Boulabiar, Jamel Jabeur (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

This work discusses the problem of Arens regularity of a lattice-ordered ring. In this prospect, a counterexample is furnished to show that without extra conditions, a lattice-ordered ring need not be Arens regular. However, as shown in this paper, it turns out that any f -ring in the sense of Birkhoff and Pierce is Arens regular. This result is then used and extended to the more general setting of almost f -rings introduced again by Birkhoff.

Atomicity of lattice effect algebras and their sub-lattice effect algebras

Jan Paseka, Zdena Riečanová (2009)

Kybernetika

We show some families of lattice effect algebras (a common generalization of orthomodular lattices and MV-effect algebras) each element E of which has atomic center C(E) or the subset S(E) of all sharp elements, resp. the center of compatibility B(E) or every block M of E. The atomicity of E or its sub-lattice effect algebras C(E), S(E), B(E) and blocks M of E is very useful equipment for the investigations of its algebraic and topological properties, the existence or smearing of states on E, questions...

Currently displaying 1 – 20 of 151

Page 1 Next