The Lamé family of connections on the projective line
Frank Loray[1]; Marius van der Put[2]; Felix Ulmer[1]
- [1] Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
- [2] Department of mathematics, University of Groningen, P.O.Box 800, 9700 AV, Groningen, The Netherlands
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 2, page 371-409
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topLoray, Frank, van der Put, Marius, and Ulmer, Felix. "The Lamé family of connections on the projective line." Annales de la faculté des sciences de Toulouse Mathématiques 17.2 (2008): 371-409. <http://eudml.org/doc/10090>.
@article{Loray2008,
abstract = {This paper deals with rank two connections on the projective line having four simple poles with prescribed local exponents 1/4 and $-1/4$. This Lamé family of connections has been extensively studied in the literature. The differential Galois group of a Lamé connection is never maximal : it is either dihedral (finite or infinite) or reducible. We provide an explicit moduli space of those connections having a free underlying vector bundle and compute the algebraic locus of those reducible connections. The irreducible Lamé connections are derived from the rank $1$ regular connections on the elliptic curve $w^2=z(z-1)(z-t)$; those connections having a finite Galois group are known to be related to points of finite order on the elliptic curve. In the paper, we provide a very efficient algorithm to compute the locus of those Lamé connections having a finite Galois group of a given order. We also give an efficient algorithm to compute the minimal polynomial for the corresponding field extension. We do this computation for low order and recover this way known algebraic solutions of the Painlevé VI equation and of the classical Lamé equation. In the final section we compare our moduli space with the classical one due to Okamoto.},
affiliation = {Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France; Department of mathematics, University of Groningen, P.O.Box 800, 9700 AV, Groningen, The Netherlands; Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France},
author = {Loray, Frank, van der Put, Marius, Ulmer, Felix},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Lamé connection; differential Galois group; Painlevé VI equation; Lamé equation},
language = {eng},
month = {6},
number = {2},
pages = {371-409},
publisher = {Université Paul Sabatier, Toulouse},
title = {The Lamé family of connections on the projective line},
url = {http://eudml.org/doc/10090},
volume = {17},
year = {2008},
}
TY - JOUR
AU - Loray, Frank
AU - van der Put, Marius
AU - Ulmer, Felix
TI - The Lamé family of connections on the projective line
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 2
SP - 371
EP - 409
AB - This paper deals with rank two connections on the projective line having four simple poles with prescribed local exponents 1/4 and $-1/4$. This Lamé family of connections has been extensively studied in the literature. The differential Galois group of a Lamé connection is never maximal : it is either dihedral (finite or infinite) or reducible. We provide an explicit moduli space of those connections having a free underlying vector bundle and compute the algebraic locus of those reducible connections. The irreducible Lamé connections are derived from the rank $1$ regular connections on the elliptic curve $w^2=z(z-1)(z-t)$; those connections having a finite Galois group are known to be related to points of finite order on the elliptic curve. In the paper, we provide a very efficient algorithm to compute the locus of those Lamé connections having a finite Galois group of a given order. We also give an efficient algorithm to compute the minimal polynomial for the corresponding field extension. We do this computation for low order and recover this way known algebraic solutions of the Painlevé VI equation and of the classical Lamé equation. In the final section we compare our moduli space with the classical one due to Okamoto.
LA - eng
KW - Lamé connection; differential Galois group; Painlevé VI equation; Lamé equation
UR - http://eudml.org/doc/10090
ER -
References
top- Barth (W.) and Michel (J.).— Modular curves and Poncelet polygons, Math. Ann. 295, 25-49 (1993). Zbl0789.14033MR1198840
- Berkenbosch (M.) and van der Put (M.).— Families of linear differential equations on the projective line, Groupes de Galois arithmétiques et différentiels, 39-68, Sém. Congr., 13, Soc. Math. France, Paris, 2006. Zbl1176.12003MR2316344
- Beukers (F.).— Solutions of a Lamé system private notes, November 10 2004.
- Beukers (F.) and van der Waall (A.).— Lamé equations with algebraic solutions, J. Differential Equations 197, 1-25 (2004). Zbl1085.34068MR2030146
- Chiarellotto (B.).— On Lamé Operators which are Pullbacks of Hypergeometric Ones, Trans. Amer. Math. Soc., Vol 347, 2735-2780 (1995). Zbl0851.34024MR1308004
- Hitchin (N.J.).— Poncelet Polygons and the Painlevé Equations, Geometry and analysis (Bombay, 1992), 151–185, Tata Inst. Fund. Res., Bombay (1995). Zbl0893.32018MR1351506
- Hitchin (N.J.).— Twistor spaces, Einstein metrics and isomonodromic transformations, J. Differential Geometry 42, 30-112 (1995). Zbl0861.53049MR1350695
- van Hoeij (M.) and van der Put (M.).— Descent for differential modules and skew fields, J. Algebra 296, 18-55 (2006). Zbl1157.12004MR2191716
- Inaba (M.), Iwasaki (K.) and Saito (M.).— Dynamics of the Sixth Painlevé equation, Théories asymptotiques et équations de Painlevé, 103-167, Sémin. Congr., 14, Soc. Math. France, Paris, 2006. Zbl1161.34063MR2353464
- Jimbo (M.) and Miwa (T.).— Monodromy preserving deformations of linear ordinary differential equations with rational coefficients II, Physica 2D, 407-448 (1981a). Zbl1194.34166MR625446
- Lang (S.).— Elliptic curves : Diophantine analysis, Grundlehren no 231 (1978). Zbl0388.10001MR518817
- Manin (Yu.I.).— Sixth Painlevé equation, universal elliptic curve, and Mirror of , AMS Transl. (2) 186, 131-151 (1998). Zbl0948.14025MR1732409
- Mazzocco (M.).— Picard and Chazy solutions to the Painlevé VI equation, Math. Ann. 321, no 1, 157-195 (2001). Zbl0999.34079MR1857373
- Merel (L.).— Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., 124, 437-449 (1996). Zbl0936.11037MR1369424
- Okamoto (K.).— Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé Japan J. Math. 5, 1-79 (1979). Zbl0426.58017MR614694
- Okamoto (K.).— Studies on the Painlevé equations I. Sixth Painlevé equation , Ann. Mat. Pura Appl. (4), 146, 337-381 (1987). Zbl0637.34019MR916698
- Picard (É.).— Mémoire sur la théorie des fonctions algébriques de deux variables, Journal de Mathématiques Pures et Appliquées, 5, 135-319 (1889). Zbl21.0775.01
- Saito (M.-H.) and Takebe (T.).— Classification of Okamoto-Painlevé pairs, Kobe J. Math., 19, 21-50 (2002). Zbl1055.34144MR1980990
- Saito (M.-H.) and Terajima (H.).— Nodal curves and Riccati solutions of Painlevé equations, J. Math. Kyoto Univ., 44-3, 529-568 (2004). Zbl1117.14015MR2103782
- Sakai (H.).— Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys., 220, 165-229 (2001). Zbl1010.34083MR1882403
- Silverman (J.H.).— The Arithmetic of Elliptic Curves, GTM 106, Springer Verlag (1986). Zbl0585.14026MR817210
- Singer (M.F.).— Moduli of Linear Differential Equations on the Riemann Sphere, Pac.J. Math., 160, 343-395 (1993). Zbl0778.12007MR1233356
- Trager (B.M.).— Integration of algebraic functions, Ph.D. Thesis M.I.T., September (1984).
- Washington (L. C.).— Elliptic Curves , Chapman-Hall (2003). Zbl1034.11037MR1989729
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.