Orbit Structure of certain 2 -actions on solid torus

C. Maquera[1]; L. F. Martins[2]

  • [1] Departamento de Matemática, USP – Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, Caixa Postal 668, CEP 13560-970, São Carlos, SP, Brazil. Work supported by FAPESP of Brazil Grant 02/09425-0.
  • [2] Departamento de Matemática, UNESP – Universidade Estadual Paulista, Instituto de Biologia, Letras e Ciências Exatas, R. Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, SP, Brazil. Work supported by FAPESP of Brazil Grant 98/13400-5

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 3, page 613-633
  • ISSN: 0240-2963

Abstract

top
In this paper we describe the orbit structure of   C 2 -actions of   2   on the solid torus   S 1 × D 2   having   S 1 × { 0 }   and   S 1 × D 2   as the only compact orbits, and   S 1 × { 0 }   as singular set.

How to cite

top

Maquera, C., and Martins, L. F.. "Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus." Annales de la faculté des sciences de Toulouse Mathématiques 17.3 (2008): 613-633. <http://eudml.org/doc/10098>.

@article{Maquera2008,
abstract = {In this paper we describe the orbit structure of  $C^\{2\}$-actions of  $\{\mathbb\{R\}\}^2$  on the solid torus  $S^\{1\}\times D^\{2\}$  having  $S^\{1\} \times \lbrace 0\rbrace $  and  $S^\{1\} \times \partial D^\{2\}$  as the only compact orbits, and  $S^\{1\} \times \lbrace 0 \rbrace $  as singular set.},
affiliation = {Departamento de Matemática, USP – Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, Caixa Postal 668, CEP 13560-970, São Carlos, SP, Brazil. Work supported by FAPESP of Brazil Grant 02/09425-0.; Departamento de Matemática, UNESP – Universidade Estadual Paulista, Instituto de Biologia, Letras e Ciências Exatas, R. Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, SP, Brazil. Work supported by FAPESP of Brazil Grant 98/13400-5},
author = {Maquera, C., Martins, L. F.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {foliation; action; orbit; manifold},
language = {eng},
month = {6},
number = {3},
pages = {613-633},
publisher = {Université Paul Sabatier, Toulouse},
title = {Orbit Structure of certain $\{\mathbb\{R\}\}^\{2\}$-actions on solid torus},
url = {http://eudml.org/doc/10098},
volume = {17},
year = {2008},
}

TY - JOUR
AU - Maquera, C.
AU - Martins, L. F.
TI - Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 3
SP - 613
EP - 633
AB - In this paper we describe the orbit structure of  $C^{2}$-actions of  ${\mathbb{R}}^2$  on the solid torus  $S^{1}\times D^{2}$  having  $S^{1} \times \lbrace 0\rbrace $  and  $S^{1} \times \partial D^{2}$  as the only compact orbits, and  $S^{1} \times \lbrace 0 \rbrace $  as singular set.
LA - eng
KW - foliation; action; orbit; manifold
UR - http://eudml.org/doc/10098
ER -

References

top
  1. Arraut (J. L.), Craizer (M.).— Foliations of   M 3   defined by   2 -actions. Ann. Inst. Fourier, Grenoble,45, 4, p. 1091-1118 (1995). Zbl0833.57014MR1359841
  2. Arraut (J. L.), Maquera (C. A.).— On the orbit structure of n -actions on   n -manifolds. Qual. Theory Dyn. Syst., 4, no. 2, p. 169-180 (2003). Zbl1072.57029MR2129717
  3. Camacho (C.), Lins Neto (A.).— Geometric Theory of Foliations. Birkhäuser, Boston, Massachusetts, 1985. Zbl0568.57002MR824240
  4. Camacho (C.), Scárdua (B. A.).— On codimension one foliations with Morse singularities on three-manifolds. Topology Appl., 154, p. 1032-1040 (2007). Zbl1118.57024MR2298620
  5. Cearveau (D.).— Distributions involutives singulières. Ann. Inst. Fourier, 29, no.3, 261-294 (1979). Zbl0419.58002MR552968
  6. Chatelet (G.), Rosenberg (H.), Weil (D.).— A classification of the topological types of   2 -actions on closed orientable 3 -manifolds. Publ. Math. IHES, 43, p. 261-272 (1974). Zbl0278.57015MR346809
  7. Haefliger (A.).— Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa, Série 3, 16, p. 367-397 (1962). Zbl0122.40702MR189060
  8. Katok (A.), Hasselblatt (B.).— Introduction to the modern theory of dynamical systems. Cambridge University Press, 1995. Zbl0878.58020MR1326374
  9. de Medeiros (A. S.).— Singular foliations, differential p-forms. Ann. Fac. Sci. Toulouse Math., (6) 9, no.3, p. 451-466 (2000). Zbl0997.58001MR1842027
  10. Rosenberg (H.), Roussarie (R.), Weil (D.).— A classification of closed orientable manifolds of rank two. Ann. of Math., 91, p. 449-464 (1970). Zbl0195.25404MR270391
  11. Sacksteder (R.).— Foliations, pseudogroups. Amer. J. Math., 87, p. 79-102 (1965). Zbl0136.20903MR174061
  12. Scardua (B.), Seade (J.).— Codimension one foliations with Bott-Morse singularities I. Pre-print (2007). 
  13. Stefan (P.).— Accessible sets, orbits,, foliations with singularities. Proc. London Math. Soc., 29, p. 699-713 (1974). Zbl0342.57015MR362395
  14. Sussmann (H. J.).— Orbits of families of vector fields, integrability of distributions. Trans. Amer. Math. Soc., 180, p. 171-188 (1973). Zbl0274.58002MR321133

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.