Orbit Structure of certain -actions on solid torus
C. Maquera[1]; L. F. Martins[2]
- [1] Departamento de Matemática, USP – Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, Caixa Postal 668, CEP 13560-970, São Carlos, SP, Brazil. Work supported by FAPESP of Brazil Grant 02/09425-0.
- [2] Departamento de Matemática, UNESP – Universidade Estadual Paulista, Instituto de Biologia, Letras e Ciências Exatas, R. Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, SP, Brazil. Work supported by FAPESP of Brazil Grant 98/13400-5
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 3, page 613-633
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topMaquera, C., and Martins, L. F.. "Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus." Annales de la faculté des sciences de Toulouse Mathématiques 17.3 (2008): 613-633. <http://eudml.org/doc/10098>.
@article{Maquera2008,
abstract = {In this paper we describe the orbit structure of $C^\{2\}$-actions of $\{\mathbb\{R\}\}^2$ on the solid torus $S^\{1\}\times D^\{2\}$ having $S^\{1\} \times \lbrace 0\rbrace $ and $S^\{1\} \times \partial D^\{2\}$ as the only compact orbits, and $S^\{1\} \times \lbrace 0 \rbrace $ as singular set.},
affiliation = {Departamento de Matemática, USP – Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, Caixa Postal 668, CEP 13560-970, São Carlos, SP, Brazil. Work supported by FAPESP of Brazil Grant 02/09425-0.; Departamento de Matemática, UNESP – Universidade Estadual Paulista, Instituto de Biologia, Letras e Ciências Exatas, R. Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, SP, Brazil. Work supported by FAPESP of Brazil Grant 98/13400-5},
author = {Maquera, C., Martins, L. F.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {foliation; action; orbit; manifold},
language = {eng},
month = {6},
number = {3},
pages = {613-633},
publisher = {Université Paul Sabatier, Toulouse},
title = {Orbit Structure of certain $\{\mathbb\{R\}\}^\{2\}$-actions on solid torus},
url = {http://eudml.org/doc/10098},
volume = {17},
year = {2008},
}
TY - JOUR
AU - Maquera, C.
AU - Martins, L. F.
TI - Orbit Structure of certain ${\mathbb{R}}^{2}$-actions on solid torus
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 3
SP - 613
EP - 633
AB - In this paper we describe the orbit structure of $C^{2}$-actions of ${\mathbb{R}}^2$ on the solid torus $S^{1}\times D^{2}$ having $S^{1} \times \lbrace 0\rbrace $ and $S^{1} \times \partial D^{2}$ as the only compact orbits, and $S^{1} \times \lbrace 0 \rbrace $ as singular set.
LA - eng
KW - foliation; action; orbit; manifold
UR - http://eudml.org/doc/10098
ER -
References
top- Arraut (J. L.), Craizer (M.).— Foliations of defined by -actions. Ann. Inst. Fourier, Grenoble,45, 4, p. 1091-1118 (1995). Zbl0833.57014MR1359841
- Arraut (J. L.), Maquera (C. A.).— On the orbit structure of -actions on -manifolds. Qual. Theory Dyn. Syst., 4, no. 2, p. 169-180 (2003). Zbl1072.57029MR2129717
- Camacho (C.), Lins Neto (A.).— Geometric Theory of Foliations. Birkhäuser, Boston, Massachusetts, 1985. Zbl0568.57002MR824240
- Camacho (C.), Scárdua (B. A.).— On codimension one foliations with Morse singularities on three-manifolds. Topology Appl., 154, p. 1032-1040 (2007). Zbl1118.57024MR2298620
- Cearveau (D.).— Distributions involutives singulières. Ann. Inst. Fourier, 29, no.3, 261-294 (1979). Zbl0419.58002MR552968
- Chatelet (G.), Rosenberg (H.), Weil (D.).— A classification of the topological types of -actions on closed orientable -manifolds. Publ. Math. IHES, 43, p. 261-272 (1974). Zbl0278.57015MR346809
- Haefliger (A.).— Variétés feuilletées. Ann. Scuola Norm. Sup. Pisa, Série 3, 16, p. 367-397 (1962). Zbl0122.40702MR189060
- Katok (A.), Hasselblatt (B.).— Introduction to the modern theory of dynamical systems. Cambridge University Press, 1995. Zbl0878.58020MR1326374
- de Medeiros (A. S.).— Singular foliations, differential p-forms. Ann. Fac. Sci. Toulouse Math., (6) 9, no.3, p. 451-466 (2000). Zbl0997.58001MR1842027
- Rosenberg (H.), Roussarie (R.), Weil (D.).— A classification of closed orientable manifolds of rank two. Ann. of Math., 91, p. 449-464 (1970). Zbl0195.25404MR270391
- Sacksteder (R.).— Foliations, pseudogroups. Amer. J. Math., 87, p. 79-102 (1965). Zbl0136.20903MR174061
- Scardua (B.), Seade (J.).— Codimension one foliations with Bott-Morse singularities I. Pre-print (2007).
- Stefan (P.).— Accessible sets, orbits,, foliations with singularities. Proc. London Math. Soc., 29, p. 699-713 (1974). Zbl0342.57015MR362395
- Sussmann (H. J.).— Orbits of families of vector fields, integrability of distributions. Trans. Amer. Math. Soc., 180, p. 171-188 (1973). Zbl0274.58002MR321133
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.