On the Periodic Lorentz Gas and the Lorentz Kinetic Equation
- [1] École polytechnique, CMLS, F91128 Palaiseau cedex & Laboratoire Jacques-Louis Lions Boîte courrier 187, F75252 Paris cedex 05
Annales de la faculté des sciences de Toulouse Mathématiques (2008)
- Volume: 17, Issue: 4, page 735-749
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topGolse, François. "On the Periodic Lorentz Gas and the Lorentz Kinetic Equation." Annales de la faculté des sciences de Toulouse Mathématiques 17.4 (2008): 735-749. <http://eudml.org/doc/10103>.
@article{Golse2008,
abstract = {We prove that the Boltzmann-Grad limit of the Lorentz gas with periodic distribution of scatterers cannot be described with a linear Boltzmann equation. This is at variance with the case of a Poisson distribution of scatterers, for which the convergence to the linear Boltzmann equation was proved by Gallavotti [Phys. Rev. (2)185, 308 (1969)]. The arguments presented here complete the analysis in [Golse-Wennberg, M2AN Modél. Math. et Anal. Numér.34, 1151 (2000)], where the impossibility of a kinetic description was established only in the case of absorbing obstacles. The proof is based on estimates on the distribution of free-path lengths established in [Golse-Wennberg loc.cit.] and in [Bourgain-Golse-Wennberg, Commun. Math. Phys.190, 491 (1998)], and on a classical result on the spectrum of the linear Boltzmann equation which can be found in [Ukai-Point-Ghidouche, J. Math. Pures Appl. (9)57, 203 (1978)].},
affiliation = {École polytechnique, CMLS, F91128 Palaiseau cedex & Laboratoire Jacques-Louis Lions Boîte courrier 187, F75252 Paris cedex 05},
author = {Golse, François},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {6},
number = {4},
pages = {735-749},
publisher = {Université Paul Sabatier, Toulouse},
title = {On the Periodic Lorentz Gas and the Lorentz Kinetic Equation},
url = {http://eudml.org/doc/10103},
volume = {17},
year = {2008},
}
TY - JOUR
AU - Golse, François
TI - On the Periodic Lorentz Gas and the Lorentz Kinetic Equation
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 4
SP - 735
EP - 749
AB - We prove that the Boltzmann-Grad limit of the Lorentz gas with periodic distribution of scatterers cannot be described with a linear Boltzmann equation. This is at variance with the case of a Poisson distribution of scatterers, for which the convergence to the linear Boltzmann equation was proved by Gallavotti [Phys. Rev. (2)185, 308 (1969)]. The arguments presented here complete the analysis in [Golse-Wennberg, M2AN Modél. Math. et Anal. Numér.34, 1151 (2000)], where the impossibility of a kinetic description was established only in the case of absorbing obstacles. The proof is based on estimates on the distribution of free-path lengths established in [Golse-Wennberg loc.cit.] and in [Bourgain-Golse-Wennberg, Commun. Math. Phys.190, 491 (1998)], and on a classical result on the spectrum of the linear Boltzmann equation which can be found in [Ukai-Point-Ghidouche, J. Math. Pures Appl. (9)57, 203 (1978)].
LA - eng
UR - http://eudml.org/doc/10103
ER -
References
top- Bardos (C.), Dumas (L.), Golse (F.).— Diffusion approximation for billiards with totally accommodating scatterers. J. Statist. Phys. 86, no. 1-2, p. 351-375 (1997). Zbl0937.82042MR1435202
- Bobylev (A.), Hanse (A.), Piasecki (J.), Hauge (E.).— From the Liouville equation to the generalized Boltzmann equation for magnetotransport in the 2D Lorentz model. J. Statist. Phys.102, p. 1133-1150 (2001). Zbl0990.82021MR1830442
- Boca (F.), Zaharescu (A.).— The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit. Commun. Math. Phys. 269, no. 2, 425-471, (2007). Zbl1143.37002MR2274553
- Boldrighini (C.), Bunimovich (L.A.), Sinai (Ya.G.).— On the Boltzmann equation for the Lorentz gas. J. Statist. Phys.32, p; 477-501, (1983). Zbl0583.76092MR725107
- Bunimovich (L.A.).— Billiards and other hyperbolic systems; in Encyclopaedia of Mathematical Sciences, vol. 100: Dynamical systems, ergodic theory and applications; Sinai (Ya.G.) ed., 2nd ed., Springer-Verlag, Berlin (2000). Zbl06329579
- Bunimovich (L.), Chernov (N.), Sinai (Ya.G.).— Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46, p. 47-106, (1991). Zbl0780.58029MR1138952
- Bunimovich (L.), Sinai (Ya.G.).— Statistical properties of Lorentz gas with periodic configuration of scatterers. Comm. Math. Phys. 78, p. 479-497, (1980/81). Zbl0459.60099MR606459
- Bourgain (J.), Golse (F.), Wennberg (B.).— On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys.190, p. 491-508 (1998). Zbl0910.60082MR1600299
- Caglioti (E.), Golse (F.).— On the distribution of free path lengths for the periodic Lorentz gas III. Commun. Math. Phys.236, p. 119 (2003). Zbl1041.82016MR1981109
- Desvillettes (L.), Ricci (L.).— Nonmarkovianity of the Boltzmann-Grad limit of a system of random obstacles in a given force field. Bull. Sci. Math., 128, p. 39-46, (2004). Zbl1048.82004MR2033100
- Gallavotti (G.).— Divergences and approach to equilibrium in the Lorentz and the Wind-tree models. Phys. Rev. (2)185, p. 308 (1969).
- Gallavotti (G.).— Nota int. no. 358, Istit. di Fisica, Università di Roma, (1972); preprint mp-arc 93-304.
- Golse (F.).— On the statistics of free-path lengths for the periodic Lorentz gas. XIVth International Congress on Mathematical Physics, 439-446, World Sci. Publ., Hackensack, NJ (2005). Zbl1221.82081MR2227857
- Golse (F.), Wennberg (B.).— On the distribution of free path lengths for the periodic Lorentz gas II. M2AN Modél. Math. et Anal. Numér.34, p. 1151-1163 (2000). Zbl1006.82025MR1812731
- Lorentz (H.).— Le mouvement des électrons dans les métaux. Arch. Néerl.10, p. 336-371 (1905). Zbl36.0922.02
- Papanicolaou (P.).— Asymptotic analysis of transport processes. Bull. Amer. Math. Soc.81, p. 330-392 (1975). Zbl0361.60056MR362523
- Ricci (L.), Wennberg (B.).— On the derivation of a linear Boltzmann equation from a periodic lattice gas. Stochastic Process. Appl.111, p. 281-315 (2004). Zbl1094.82013MR2056540
- Spohn (H.).— The Lorentz process converges to a random flight process. Commun. Math. Phys.60, p. 277-290 (1978). Zbl0381.60099MR496299
- Ukai (S.), Point (N.), Ghidouche (H.).— Sur la solution globale du problème mixte de l’équation de Boltzmann nonlinéaire. J. Math. Pures Appl. (9)57, p. 203-229 (1978). Zbl0335.35027MR513098
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.