On the distribution of free path lengths for the periodic Lorentz gas II
François Golse; Bernt Wennberg
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 6, page 1151-1163
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- C. Boldrighini, L.A. Bunimovich and Ya.G. Sinai, On the Boltzmann equation for the Lorentz gas. J. Statist. Phys.32 (1983) 477-501.
- J. Bourgain, F. Golse and B. Wennberg, On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys.190 (1998) 491-508.
- L.A. Bunimovich and Ya.G. Sinai, Markov Partitions of Dispersed Billiards. Comm. Math. Phys.73 (1980) 247-280.
- L.A. Bunimovich and Ya.G. Sinai, Statistical properties of the Lorentz gas with periodic configurations of scatterers. Comm. Math. Phys.78 (1981) 479-497.
- L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Markov partitions for two-dimensional hyperbolic billiards. Russian Math. Surveys45 (1990) 105-152.
- L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys46 (1991) 47-106.
- H.S. Dumas, L. Dumas and F. Golse, Remarks on the notion of mean free path for a periodic array of spherical obstacles. J. Statist. Phys.87 (1997) 943-950.
- G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna No. 358, Istituto di Fisica, Università di Roma (1972).
- F. Golse, Transport dans les milieux composites fortement contrastés. I. Le modèle du billard. Ann. Inst. H. Poincaré Phys. Théor.61 (1994) 381-410.
- H. Spohn, The Lorentz flight process converges to a random flight process. Comm. Math. Phys.60 (1978) 277-290.