Legendrian graphs and quasipositive diagrams
Sebastian Baader[1]; Masaharu Ishikawa[2]
- [1] Department of Mathematics, ETH Zürich, Switzerland
- [2] Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 2, page 285-305
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBaader, Sebastian, and Ishikawa, Masaharu. "Legendrian graphs and quasipositive diagrams." Annales de la faculté des sciences de Toulouse Mathématiques 18.2 (2009): 285-305. <http://eudml.org/doc/10110>.
@article{Baader2009,
abstract = {In this paper we clarify the relationship between ribbon surfaces of Legendrian graphs and quasipositive diagrams by using certain fence diagrams. As an application, we give an alternative proof of a theorem concerning a relationship between quasipositive fiber surfaces and contact structures on $S^3$. We also answer a question of L. Rudolph concerning moves of quasipositive diagrams.},
affiliation = {Department of Mathematics, ETH Zürich, Switzerland; Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan},
author = {Baader, Sebastian, Ishikawa, Masaharu},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {contact structure; fiber surface; Legendrian graph},
language = {eng},
month = {1},
number = {2},
pages = {285-305},
publisher = {Université Paul Sabatier, Toulouse},
title = {Legendrian graphs and quasipositive diagrams},
url = {http://eudml.org/doc/10110},
volume = {18},
year = {2009},
}
TY - JOUR
AU - Baader, Sebastian
AU - Ishikawa, Masaharu
TI - Legendrian graphs and quasipositive diagrams
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/1//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 2
SP - 285
EP - 305
AB - In this paper we clarify the relationship between ribbon surfaces of Legendrian graphs and quasipositive diagrams by using certain fence diagrams. As an application, we give an alternative proof of a theorem concerning a relationship between quasipositive fiber surfaces and contact structures on $S^3$. We also answer a question of L. Rudolph concerning moves of quasipositive diagrams.
LA - eng
KW - contact structure; fiber surface; Legendrian graph
UR - http://eudml.org/doc/10110
ER -
References
top- Akbulut (S.), Ozbagci (B.).— Lefschetz fibrations on compact Stein surfaces, Geometry & Topology 5, p. 319-334 (2001). Zbl1002.57062MR1825664
- Chekanov (Y.).— Differential algebra of Legendrian links, Invent. Math. 150, p. 441-483 (2002). Zbl1029.57011MR1946550
- Eliashberg (Y.), Fraser (M.).— Classification of topologically trivial Legendrian knots, in Geometry, topology, and dynamics (Montreal, PQ, 1995), pp. 17-51, CRM Proc. Lecture Notes 15, A.M.S., Providence, RI, (1998). Zbl0907.53021MR1619122
- Etnyre (J.B.).— Lectures on open book decompositions and contact structures, Floer homology, gauge theory, and low-dimensional topology, pp. 103-141, Clay Math. Proc., 5, A.M.S., Providence, RI, 2006. Zbl1108.53050MR2249250
- Etnyre (J.B.), Honda (K.).— Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1, p. 63-120 (2001). Zbl1037.57021MR1959579
- Giroux (E.).— Convexité en topologie de contact, Comment. Math. Helvetici 66, p. 637-677 (1991). Zbl0766.53028MR1129802
- Giroux (E.).— Géométrie de contact : de la dimension trois vers dimensions supérieures, Proceedings of the International Congress of Mathematicians, Vol II (Beijing, 2002), pp.405-414, Higher Ed. Press, Beijing, (2002). Zbl1015.53049MR1957051
- Gompf (R.E.).— Handlebody construction of Stein surfaces, Ann. of Math. 148, p. 619-693 (1998). Zbl0919.57012MR1668563
- Goodman (N.).— Contact structures and open books, Ph. D thesis, UT Austin, (2003).
- Harer (J.).— How to construct all fibered knots and links, Topology 21, p. 263-280 (1982). Zbl0504.57002MR649758
- Hedden (M.).— Notions of positivity and the Ozsváth-Szabó concordance invariant, to appear in J. Knot Theory Ramifications, available at: arXiv.math.GT/0509499. MR2372849
- Hedden (M.).— Some remarks on cabling, contact structures, and complex curves, to appear in Proc. Gökova Geom. Topol. Conference, 2007, available at: arXiv.math.GT/0804.4327. Zbl1187.57005
- Ng (L.L.).— Computable Legendrian invariants, Topology 42 (2003), no. 1, 55-82. Zbl1032.53070MR1928645
- D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Inc., Berkeley, Calif., (1976). Zbl0339.55004MR1277811
- Rudolph (L.).— Quasipositive plumbing (Constructions of quasipositive knots and links, V), Proc. A.M.S. 126, p. 257-267 (1998). Zbl0888.57010MR1452826
- Światkowski (J.).— On the isotopy of Legendrian knots, Ann. Glob. Anal. Geom. 10, p. 195-207 (1992). Zbl0766.53030MR1186009
- Torisu (I.).— Convex contact structures and fibered links in 3-manifolds, Int. Math. Res. Not. 9, p. 441-454 (2000). Zbl0978.53133MR1756943
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.