A computation of invariants of a rational self-map

Ekaterina Amerik[1]

  • [1] Université Paris-Sud, Laboratoire des Mathématiques, Bâtiment 425, 91405 Orsay, France; and Laboratoire J.-V. Poncelet, IUM, Bol. Vlasievskij per. 11, Moscow 119002, Russia.

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 3, page 481-493
  • ISSN: 0240-2963

Abstract

top
I prove the algebraic stability and compute the dynamical degrees of C. Voisin’s rational self-map of the variety of lines on a cubic fourfold.

How to cite

top

Amerik, Ekaterina. "A computation of invariants of a rational self-map." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 481-493. <http://eudml.org/doc/10114>.

@article{Amerik2009,
abstract = {I prove the algebraic stability and compute the dynamical degrees of C. Voisin’s rational self-map of the variety of lines on a cubic fourfold.},
affiliation = {Université Paris-Sud, Laboratoire des Mathématiques, Bâtiment 425, 91405 Orsay, France; and Laboratoire J.-V. Poncelet, IUM, Bol. Vlasievskij per. 11, Moscow 119002, Russia.},
author = {Amerik, Ekaterina},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {cubic; lines; algebraic stability; dynamical degrees},
language = {eng},
month = {7},
number = {3},
pages = {481-493},
publisher = {Université Paul Sabatier, Toulouse},
title = {A computation of invariants of a rational self-map},
url = {http://eudml.org/doc/10114},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Amerik, Ekaterina
TI - A computation of invariants of a rational self-map
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 481
EP - 493
AB - I prove the algebraic stability and compute the dynamical degrees of C. Voisin’s rational self-map of the variety of lines on a cubic fourfold.
LA - eng
KW - cubic; lines; algebraic stability; dynamical degrees
UR - http://eudml.org/doc/10114
ER -

References

top
  1. Beauville (A.), Donagi (R.).— La variété des droites d’une hypersurface cubique de dimension 4 , C. R. Acad. Sci. Paris Sér. I Math., 301, no. 14, p. 703-706 (1985). Zbl0602.14041MR818549
  2. Briend (J.-Y.), Duval (J.).— Deux caractérisations de la mesure d’équilibre d’un endomorphisme de k ( ) , Publ. Math. Inst. Hautes études Sci. No. 93, p. 145-159 (2001). Zbl1010.37004MR1863737
  3. Clemens (H.), Griffiths (Ph.).— The intermediate jacobian of the cubic threefold, Ann. Math. 95, p. 281-356 (1972). Zbl0214.48302MR302652
  4. Dinh (T. C.), Sibony (N.).— Une borne supérieure pour l’entropie topologique d’une application rationnelle, Annals of Maths. 161, p. 1637-1644 (2005). Zbl1084.54013MR2180409
  5. Dinh (T. C.), Sibony (N.).— Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helvetici 81, p. 221-258 (2006). Zbl1094.32005MR2208805
  6. Fulton (W.).— Intersection theory, Springer-Verlag, Berlin 1984. Zbl0541.14005MR732620
  7. Guedj (V.).— Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161, no. 3, p. 1589-1607 (2005). Zbl1088.37020MR2179389
  8. Russakovskii (A.), Schiffman (B.).— Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), no. 3, 897-932. Zbl0901.58023MR1488341
  9. Voisin (C.).— Intrinsic pseudovolume forms and K -correspondences. The Fano Conference, p. 761-792, Univ. Torino, Turin, (2004). Zbl1177.14040MR2112602

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.