A computation of invariants of a rational self-map

Ekaterina Amerik[1]

  • [1] Université Paris-Sud, Laboratoire des Mathématiques, Bâtiment 425, 91405 Orsay, France; and Laboratoire J.-V. Poncelet, IUM, Bol. Vlasievskij per. 11, Moscow 119002, Russia.

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 3, page 481-493
  • ISSN: 0240-2963

Abstract

top
I prove the algebraic stability and compute the dynamical degrees of C. Voisin’s rational self-map of the variety of lines on a cubic fourfold.

How to cite

top

Amerik, Ekaterina. "A computation of invariants of a rational self-map." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 481-493. <http://eudml.org/doc/10114>.

@article{Amerik2009,
abstract = {I prove the algebraic stability and compute the dynamical degrees of C. Voisin’s rational self-map of the variety of lines on a cubic fourfold.},
affiliation = {Université Paris-Sud, Laboratoire des Mathématiques, Bâtiment 425, 91405 Orsay, France; and Laboratoire J.-V. Poncelet, IUM, Bol. Vlasievskij per. 11, Moscow 119002, Russia.},
author = {Amerik, Ekaterina},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {cubic; lines; algebraic stability; dynamical degrees},
language = {eng},
month = {7},
number = {3},
pages = {481-493},
publisher = {Université Paul Sabatier, Toulouse},
title = {A computation of invariants of a rational self-map},
url = {http://eudml.org/doc/10114},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Amerik, Ekaterina
TI - A computation of invariants of a rational self-map
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 481
EP - 493
AB - I prove the algebraic stability and compute the dynamical degrees of C. Voisin’s rational self-map of the variety of lines on a cubic fourfold.
LA - eng
KW - cubic; lines; algebraic stability; dynamical degrees
UR - http://eudml.org/doc/10114
ER -

References

top
  1. Beauville (A.), Donagi (R.).— La variété des droites d’une hypersurface cubique de dimension , C. R. Acad. Sci. Paris Sér. I Math., 301, no. 14, p. 703-706 (1985). Zbl0602.14041MR818549
  2. Briend (J.-Y.), Duval (J.).— Deux caractérisations de la mesure d’équilibre d’un endomorphisme de , Publ. Math. Inst. Hautes études Sci. No. 93, p. 145-159 (2001). Zbl1010.37004MR1863737
  3. Clemens (H.), Griffiths (Ph.).— The intermediate jacobian of the cubic threefold, Ann. Math. 95, p. 281-356 (1972). Zbl0214.48302MR302652
  4. Dinh (T. C.), Sibony (N.).— Une borne supérieure pour l’entropie topologique d’une application rationnelle, Annals of Maths. 161, p. 1637-1644 (2005). Zbl1084.54013MR2180409
  5. Dinh (T. C.), Sibony (N.).— Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helvetici 81, p. 221-258 (2006). Zbl1094.32005MR2208805
  6. Fulton (W.).— Intersection theory, Springer-Verlag, Berlin 1984. Zbl0541.14005MR732620
  7. Guedj (V.).— Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161, no. 3, p. 1589-1607 (2005). Zbl1088.37020MR2179389
  8. Russakovskii (A.), Schiffman (B.).— Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), no. 3, 897-932. Zbl0901.58023MR1488341
  9. Voisin (C.).— Intrinsic pseudovolume forms and -correspondences. The Fano Conference, p. 761-792, Univ. Torino, Turin, (2004). Zbl1177.14040MR2112602

NotesEmbed ?

top

You must be logged in to post comments.