A computation of invariants of a rational self-map
- [1] Université Paris-Sud, Laboratoire des Mathématiques, Bâtiment 425, 91405 Orsay, France; and Laboratoire J.-V. Poncelet, IUM, Bol. Vlasievskij per. 11, Moscow 119002, Russia.
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 3, page 481-493
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Beauville (A.), Donagi (R.).— La variété des droites d’une hypersurface cubique de dimension , C. R. Acad. Sci. Paris Sér. I Math., 301, no. 14, p. 703-706 (1985). Zbl0602.14041MR818549
- Briend (J.-Y.), Duval (J.).— Deux caractérisations de la mesure d’équilibre d’un endomorphisme de , Publ. Math. Inst. Hautes études Sci. No. 93, p. 145-159 (2001). Zbl1010.37004MR1863737
- Clemens (H.), Griffiths (Ph.).— The intermediate jacobian of the cubic threefold, Ann. Math. 95, p. 281-356 (1972). Zbl0214.48302MR302652
- Dinh (T. C.), Sibony (N.).— Une borne supérieure pour l’entropie topologique d’une application rationnelle, Annals of Maths. 161, p. 1637-1644 (2005). Zbl1084.54013MR2180409
- Dinh (T. C.), Sibony (N.).— Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helvetici 81, p. 221-258 (2006). Zbl1094.32005MR2208805
- Fulton (W.).— Intersection theory, Springer-Verlag, Berlin 1984. Zbl0541.14005MR732620
- Guedj (V.).— Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161, no. 3, p. 1589-1607 (2005). Zbl1088.37020MR2179389
- Russakovskii (A.), Schiffman (B.).— Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J. 46 (1997), no. 3, 897-932. Zbl0901.58023MR1488341
- Voisin (C.).— Intrinsic pseudovolume forms and -correspondences. The Fano Conference, p. 761-792, Univ. Torino, Turin, (2004). Zbl1177.14040MR2112602