Solutions globales des équations d’Einstein-Maxwell

Julien Loizelet[1]

  • [1] Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083) Faculté des Sciences et Techniques, Université François Rabelais, Parc de Grandmont 37200 Tours, France

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 3, page 495-540
  • ISSN: 0240-2963

Abstract

top
Adapting a method of Lindblad and Rodnianski, we prove existence of global solutions for the Einstein-Maxwell equations in space dimension n 3 . We consider small enough smooth and asymptotically flat initial data. We use harmonic gauge and Lorenz gauge.

How to cite

top

Loizelet, Julien. "Solutions globales des équations d’Einstein-Maxwell." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 495-540. <http://eudml.org/doc/10115>.

@article{Loizelet2009,
abstract = {En adaptant une méthode de Lindblad et Rodnianski, on prouve l’existence de solutions globales pour les équations d’Einstein-Maxwell en dimension d’espace $n\ge 3$. Les données initiales considérées sont lisses, asymptotiquement euclidiennes et suffisamment petites. On utilise la jauge harmonique et la jauge de Lorenz.},
affiliation = {Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083) Faculté des Sciences et Techniques, Université François Rabelais, Parc de Grandmont 37200 Tours, France},
author = {Loizelet, Julien},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Einstein-Maxwell system; asymptotical flatness; harmonic coordinates; Lorentz gauge},
language = {fre},
month = {7},
number = {3},
pages = {495-540},
publisher = {Université Paul Sabatier, Toulouse},
title = {Solutions globales des équations d’Einstein-Maxwell},
url = {http://eudml.org/doc/10115},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Loizelet, Julien
TI - Solutions globales des équations d’Einstein-Maxwell
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 495
EP - 540
AB - En adaptant une méthode de Lindblad et Rodnianski, on prouve l’existence de solutions globales pour les équations d’Einstein-Maxwell en dimension d’espace $n\ge 3$. Les données initiales considérées sont lisses, asymptotiquement euclidiennes et suffisamment petites. On utilise la jauge harmonique et la jauge de Lorenz.
LA - fre
KW - Einstein-Maxwell system; asymptotical flatness; harmonic coordinates; Lorentz gauge
UR - http://eudml.org/doc/10115
ER -

References

top
  1. Bizoń (P.), Chmaj (T.), and Schmidt (B.G.).— Critical behavior in vacuum gravitational collapse in 4+1 dimensions, Phys. Rev. Lett. 95, 071102, gr-qc/0506074 (2005). MR2167019
  2. Choquet-Bruhat (Y.).— Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, p. 144-225 (1952). Zbl0049.19201
  3. Christodoulou (D.).— Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math. 39, p. 267-282 (1986). MR MR820070 (87c :35111) Zbl0612.35090MR820070
  4. Christodoulou (D.) and Klainerman (S.).— The global nonlinear stability of the Minkowski space, Princeton UP, (1993). Zbl0827.53055MR1316662
  5. Emparan (R.) and Reall (H.S.).— Black rings, hep-th/0608012, (2006). Zbl1108.83001MR2270099
  6. Hollands (S.) and Ishibashi (A.).— Asymptotic flatness and Bondi energy in higher dimensional gravity, Jour. Math. Phys. 46, 022503, 31, gr-qc/0304054 (2005). MR MR2121709 (2005m :83039) Zbl1076.83010MR2121709
  7. Hollands (S.) and Wald (R.M.).— Conformal null infinity does not exist for radiating solutions in odd spacetime dimensions, Class. Quantum Grav. 21, p. 5139-5145, gr-qc/0407014, (2004). MR MR2103245 (2005k :83039) Zbl1081.83030MR2103245
  8. Hörmander (L.).— Lectures on Nonlinear Hyperbolic Differential Equations,Springer, (1986). Zbl0881.35001MR1466700
  9. Hörmander (L.).— On the fully nonlinear Cauchy problem with small data. II, Microlocal analysis and nonlinear waves (Minneapolis, MN, 1988-1989), IMA Vol. Math. Appl., vol. 30, Springer, New York, 1991, pp. 51-81. MR MR1120284 (94c :35127) Zbl0783.35036MR1120284
  10. Klainerman (S.).— Global Existence for Nonlinear Wave Equations. Communications on Pure and Applied Mathematics, Vol. XXXIII, p. 43-100 (1980). Zbl0405.35056MR544044
  11. Klainerman (S.).— Uniform Decay Estimates and the Lorentz Invariance of the Classical wave Equation.Communications on Pure and Applied Mathematics, Vol. XXXVIII, p. 321-332 (1985). Zbl0635.35059MR784477
  12. Klainerman (S.).— The null condition and global existence to nonlinear wave equations. Lectures in Applied Mathematics 23, p. 293-326 (1986). Zbl0599.35105MR837683
  13. Lindblad (H.) and Rodnianski (I.).— Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256, p. 43-110 (2005). Zbl1081.83003MR2134337
  14. Lindblad (H.) and Rodnianski (I.).— The global stability of Minkowski space-time in harmonic gauge. ArXiv :math.AP/0411109. Zbl1192.53066
  15. Ta-Tsien Li and Yun Mei Chen.— Global classical solutions for nonlinear evolution equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 45, Longman Scientific & Technical, Harlow (1992). MR MR1172318 (93g :35002) Zbl0787.35002MR1172318

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.