A model of gauge theory with invariant variables.
In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.
En adaptant une méthode de Lindblad et Rodnianski, on prouve l’existence de solutions globales pour les équations d’Einstein-Maxwell en dimension d’espace . Les données initiales considérées sont lisses, asymptotiquement euclidiennes et suffisamment petites. On utilise la jauge harmonique et la jauge de Lorenz.