Representations of of a local field and harmonic cochains on graph
- [1] Université de Poitiers, UMR6086 CNRS, SP2MI – Téléport, Bd M. et P. Curie BP 30179, 86962 Futuroscope Chasseneuil Cedex
Annales de la faculté des sciences de Toulouse Mathématiques (2009)
- Volume: 18, Issue: 3, page 541-559
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBroussous, Paul. "Representations of ${\rm PGL}(2)$ of a local field and harmonic cochains on graph." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 541-559. <http://eudml.org/doc/10116>.
@article{Broussous2009,
abstract = {We give combinatorial models for non-spherical, generic, smooth, complex representations of the group $G=\{\rm PGL\}(2,F)$, where $F$ is a non-Archimedean locally compact field. More precisely we carry on studying the graphs $(\{\tilde\{X\}\}_k )_\{k\ge 0\}$ defined in a previous work. We show that such representations may be obtained as quotients of the cohomology of a graph $\{\tilde\{X\}\}_k$, for a suitable integer $k$, or equivalently as subspaces of the space of discrete harmonic cochains on such a graph. Moreover, for supercuspidal representations, these models are unique.},
affiliation = {Université de Poitiers, UMR6086 CNRS, SP2MI – Téléport, Bd M. et P. Curie BP 30179, 86962 Futuroscope Chasseneuil Cedex},
author = {Broussous, Paul},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {7},
number = {3},
pages = {541-559},
publisher = {Université Paul Sabatier, Toulouse},
title = {Representations of $\{\rm PGL\}(2)$ of a local field and harmonic cochains on graph},
url = {http://eudml.org/doc/10116},
volume = {18},
year = {2009},
}
TY - JOUR
AU - Broussous, Paul
TI - Representations of ${\rm PGL}(2)$ of a local field and harmonic cochains on graph
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 541
EP - 559
AB - We give combinatorial models for non-spherical, generic, smooth, complex representations of the group $G={\rm PGL}(2,F)$, where $F$ is a non-Archimedean locally compact field. More precisely we carry on studying the graphs $({\tilde{X}}_k )_{k\ge 0}$ defined in a previous work. We show that such representations may be obtained as quotients of the cohomology of a graph ${\tilde{X}}_k$, for a suitable integer $k$, or equivalently as subspaces of the space of discrete harmonic cochains on such a graph. Moreover, for supercuspidal representations, these models are unique.
LA - eng
UR - http://eudml.org/doc/10116
ER -
References
top- Broussous (P.).— Simplicial complexes lying equivariantly over the affine building of , Mathematische Annalen, 329, p. 495-511 (2004). Zbl1129.22009MR2127987
- Broussous (P.).— Type theory and the symmetric space , where is local non-archimediann and is the diagonal torus, in preparation. Zbl1192.22007
- AhumadaBustamante (G.).— Analyse harmonique sur l’espace des chemins d’un arbre, PhD thesis, University of Paris Sud (1988).
- Cartier (P.).— Harmonic analysis on trees, Harmonic Analysis on Homogeneous Spaces, Calvin C. Moore, ed., Proc. Sympos. Pure Math., XXVI, Amer. Math. Soc., Providence, R. I., p. 419-424 (1973). Zbl0309.22009MR338272
- Casselman (W.).— On some results of Atkin and Lehner, Math. Ann. 201, p. 301-314 (1873). Zbl0239.10015MR337789
- Jacquet (H.), Langlands (R.P.).— Automorphic forms on , Lecture Notes in Math., 114, Springer Verlag (1970). Zbl0236.12010MR401654
- Jacquet (H.), Piateski-Shapiro (I.), Shalika (J.).— Conducteur des représentations du groupe linéaire, Math. Ann., 256 no. 2, p. 199-214 (1981). Zbl0443.22013MR620708
- Serre (J.-P.).— Trees, Springer, 2nd ed.2002. Zbl1013.20001MR607504
- Waldspurger (J.-L.).— Correspondance de Shimura, J. Math. Pures et Appl., 59, p. 1-133 (1980). Zbl0412.10019MR577010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.