Representations of PGL ( 2 ) of a local field and harmonic cochains on graph

Paul Broussous[1]

  • [1] Université de Poitiers, UMR6086 CNRS, SP2MI – Téléport, Bd M. et P. Curie BP 30179, 86962 Futuroscope Chasseneuil Cedex

Annales de la faculté des sciences de Toulouse Mathématiques (2009)

  • Volume: 18, Issue: 3, page 541-559
  • ISSN: 0240-2963

Abstract

top
We give combinatorial models for non-spherical, generic, smooth, complex representations of the group G = PGL ( 2 , F ) , where F is a non-Archimedean locally compact field. More precisely we carry on studying the graphs ( X ˜ k ) k 0 defined in a previous work. We show that such representations may be obtained as quotients of the cohomology of a graph X ˜ k , for a suitable integer k , or equivalently as subspaces of the space of discrete harmonic cochains on such a graph. Moreover, for supercuspidal representations, these models are unique.

How to cite

top

Broussous, Paul. "Representations of ${\rm PGL}(2)$ of a local field and harmonic cochains on graph." Annales de la faculté des sciences de Toulouse Mathématiques 18.3 (2009): 541-559. <http://eudml.org/doc/10116>.

@article{Broussous2009,
abstract = {We give combinatorial models for non-spherical, generic, smooth, complex representations of the group $G=\{\rm PGL\}(2,F)$, where $F$ is a non-Archimedean locally compact field. More precisely we carry on studying the graphs $(\{\tilde\{X\}\}_k )_\{k\ge 0\}$ defined in a previous work. We show that such representations may be obtained as quotients of the cohomology of a graph $\{\tilde\{X\}\}_k$, for a suitable integer $k$, or equivalently as subspaces of the space of discrete harmonic cochains on such a graph. Moreover, for supercuspidal representations, these models are unique.},
affiliation = {Université de Poitiers, UMR6086 CNRS, SP2MI – Téléport, Bd M. et P. Curie BP 30179, 86962 Futuroscope Chasseneuil Cedex},
author = {Broussous, Paul},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {7},
number = {3},
pages = {541-559},
publisher = {Université Paul Sabatier, Toulouse},
title = {Representations of $\{\rm PGL\}(2)$ of a local field and harmonic cochains on graph},
url = {http://eudml.org/doc/10116},
volume = {18},
year = {2009},
}

TY - JOUR
AU - Broussous, Paul
TI - Representations of ${\rm PGL}(2)$ of a local field and harmonic cochains on graph
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2009/7//
PB - Université Paul Sabatier, Toulouse
VL - 18
IS - 3
SP - 541
EP - 559
AB - We give combinatorial models for non-spherical, generic, smooth, complex representations of the group $G={\rm PGL}(2,F)$, where $F$ is a non-Archimedean locally compact field. More precisely we carry on studying the graphs $({\tilde{X}}_k )_{k\ge 0}$ defined in a previous work. We show that such representations may be obtained as quotients of the cohomology of a graph ${\tilde{X}}_k$, for a suitable integer $k$, or equivalently as subspaces of the space of discrete harmonic cochains on such a graph. Moreover, for supercuspidal representations, these models are unique.
LA - eng
UR - http://eudml.org/doc/10116
ER -

References

top
  1. Broussous (P.).— Simplicial complexes lying equivariantly over the affine building of GL ( N ) , Mathematische Annalen, 329, p. 495-511 (2004). Zbl1129.22009MR2127987
  2. Broussous (P.).— Type theory and the symmetric space P G L ( 2 , F ) / T , where F is local non-archimediann and T is the diagonal torus, in preparation. Zbl1192.22007
  3. AhumadaBustamante (G.).— Analyse harmonique sur l’espace des chemins d’un arbre, PhD thesis, University of Paris Sud (1988). 
  4. Cartier (P.).— Harmonic analysis on trees, Harmonic Analysis on Homogeneous Spaces, Calvin C. Moore, ed., Proc. Sympos. Pure Math., XXVI, Amer. Math. Soc., Providence, R. I., p. 419-424 (1973). Zbl0309.22009MR338272
  5. Casselman (W.).— On some results of Atkin and Lehner, Math. Ann. 201, p. 301-314 (1873). Zbl0239.10015MR337789
  6. Jacquet (H.), Langlands (R.P.).— Automorphic forms on GL ( 2 ) , Lecture Notes in Math., 114, Springer Verlag (1970). Zbl0236.12010MR401654
  7. Jacquet (H.), Piateski-Shapiro (I.), Shalika (J.).— Conducteur des représentations du groupe linéaire, Math. Ann., 256 no. 2, p. 199-214 (1981). Zbl0443.22013MR620708
  8. Serre (J.-P.).— Trees, Springer, 2nd ed.2002. Zbl1013.20001MR607504
  9. Waldspurger (J.-L.).— Correspondance de Shimura, J. Math. Pures et Appl., 59, p. 1-133 (1980). Zbl0412.10019MR577010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.