A Lemma on Highly Ramified ...-Factors.
We extend Prasad’s results on the existence of trilinear forms on representations of of a local field, by permitting one or more of the representations to be reducible principal series, with infinite-dimensional irreducible quotient. We apply this in a global setting to compute (unconditionally) the dimensions of the subspaces of motivic cohomology of the product of two modular curves constructed by Beilinson.
In this paper, we give a concrete method to compute -stabilized vectors in the space of parahori-fixed vectors for connected reductive groups over -adic fields. An application to the global setting is also discussed. In particular, we give an explicit -stabilized form of a Saito-Kurokawa lift.
Given a representation of a local unitary group and another local unitary group , either the Theta correspondence provides a representation of or we set . If is fixed and varies in a Witt tower, a natural question is: for which is ? For given dimension there are exactly two isometry classes of unitary spaces that we denote . For let us denote the minimal of the same parity of such that , then we prove that where is the dimension of .
Let be an unramified group over a -adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with -level structure initiated by M. Rapoport and the author in [15].