The number of vertices of a Fano polytope

Cinzia Casagrande[1]

  • [1] Università di Pisa Dipartimento di Matematica “L. Tonelli” Largo Bruno Pontecorvo, 5 56127 Pisa (Italy)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 1, page 121-130
  • ISSN: 0373-0956

Abstract

top
Let X be a Gorenstein, -factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of X in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.

How to cite

top

Casagrande, Cinzia. "The number of vertices of a Fano polytope." Annales de l’institut Fourier 56.1 (2006): 121-130. <http://eudml.org/doc/10136>.

@article{Casagrande2006,
abstract = {Let $X$ be a Gorenstein, $\mathbb\{Q\}$-factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of $X$ in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.},
affiliation = {Università di Pisa Dipartimento di Matematica “L. Tonelli” Largo Bruno Pontecorvo, 5 56127 Pisa (Italy)},
author = {Casagrande, Cinzia},
journal = {Annales de l’institut Fourier},
keywords = {toric varieties; Fano varieties; reflexive polytopes; Fano polytopes; toric variety; Fano variety; reflexive polytope; Fano polytope},
language = {eng},
number = {1},
pages = {121-130},
publisher = {Association des Annales de l’institut Fourier},
title = {The number of vertices of a Fano polytope},
url = {http://eudml.org/doc/10136},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Casagrande, Cinzia
TI - The number of vertices of a Fano polytope
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 121
EP - 130
AB - Let $X$ be a Gorenstein, $\mathbb{Q}$-factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of $X$ in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.
LA - eng
KW - toric varieties; Fano varieties; reflexive polytopes; Fano polytopes; toric variety; Fano variety; reflexive polytope; Fano polytope
UR - http://eudml.org/doc/10136
ER -

References

top
  1. Marco Andreatta, Elena Chierici, Gianluca Occhetta, Generalized Mukai conjecture for special Fano varieties, Central European Journal of Mathematics 2 (2004), 272-293 Zbl1068.14049MR2113552
  2. Victor V. Batyrev, Toric Fano threefolds, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 45 (1981), 704-717 Zbl0478.14032MR631434
  3. Victor V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Journal of Algebraic Geometry 3 (1994), 493-535 Zbl0829.14023MR1269718
  4. Victor V. Batyrev, On the classification of toric Fano 4-folds, Journal of Mathematical Sciences (New York) 94 (1999), 1021-1050 Zbl0929.14024MR1703904
  5. Laurent Bonavero, Cinzia Casagrande, Olivier Debarre, Stéphane Druel, Sur une conjecture de Mukai, Commentarii Mathematici Helvetici 78 (2003), 601-626 Zbl1044.14019MR1998396
  6. Cinzia Casagrande, Toric Fano varieties and birational morphisms, International Mathematics Research Notices 27 (2003), 1473-1505 Zbl1083.14516MR1976232
  7. Koji Cho, Yoichi Miyaoka, Nick Shepherd-Barron, Characterizations of projective space and applications to complex symplectic geometry, Higher Dimensional Birational Geometry 35 (2002), 1-89, Mathematical Society of Japan Zbl1063.14065MR1929791
  8. Olivier Debarre, Higher-Dimensional Algebraic Geometry, (2001), Springer Verlag Zbl0978.14001MR1841091
  9. Olivier Debarre, Fano varieties, Higher Dimensional Varieties and Rational Points 12 (2003), 93-132, Springer Verlag, Budapest, 2001 MR2011745
  10. Günter Ewald, Combinatorial Convexity and Algebraic Geometry, 168 (1996), Springer Verlag Zbl0869.52001MR1418400
  11. Branko Grünbaum, Convex Polytopes, 221 (2003), Springer Verlag Zbl1024.52001MR2038487
  12. Benjamin Nill, Complete toric varieties with reductive automorphism group, (2004) Zbl1091.14011
  13. Benjamin Nill, Gorenstein toric Fano varieties, Manuscripta Mathematica 116 (2005), 183-210 Zbl1067.14052MR2122419
  14. Gianluca Occhetta, A characterization of products of projective spaces, (2003) Zbl1059.14023
  15. Hiroshi Sato, Toward the classification of higher-dimensional toric Fano varieties, Tôhoku Mathematical Journal 52 (2000), 383-413 Zbl1028.14015MR1772804
  16. V. E. Voskresenskiĭ, Alexander Klyachko, Toric Fano varieties and systems of roots, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 48 (1984), 237-263 Zbl0572.14029MR740791
  17. Keiichi Watanabe, Masayuki Watanabe, The classification of Fano 3-folds with torus embeddings, Tokyo Journal of Mathematics 5 (1982), 37-48 Zbl0581.14028MR670903
  18. Jarosław A. Wiśniewski, On a conjecture of Mukai, Manuscripta Mathematica 68 (1990), 135-141 Zbl0715.14033MR1063222
  19. Jarosław A. Wiśniewski, Toric Mori theory and Fano manifolds, Geometry of Toric Varieties 6 (2002), 249-272, Société Mathématique de France Zbl1053.14002MR2063740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.