The number of vertices of a Fano polytope
- [1] Università di Pisa Dipartimento di Matematica “L. Tonelli” Largo Bruno Pontecorvo, 5 56127 Pisa (Italy)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 1, page 121-130
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCasagrande, Cinzia. "The number of vertices of a Fano polytope." Annales de l’institut Fourier 56.1 (2006): 121-130. <http://eudml.org/doc/10136>.
@article{Casagrande2006,
abstract = {Let $X$ be a Gorenstein, $\mathbb\{Q\}$-factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of $X$ in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.},
affiliation = {Università di Pisa Dipartimento di Matematica “L. Tonelli” Largo Bruno Pontecorvo, 5 56127 Pisa (Italy)},
author = {Casagrande, Cinzia},
journal = {Annales de l’institut Fourier},
keywords = {toric varieties; Fano varieties; reflexive polytopes; Fano polytopes; toric variety; Fano variety; reflexive polytope; Fano polytope},
language = {eng},
number = {1},
pages = {121-130},
publisher = {Association des Annales de l’institut Fourier},
title = {The number of vertices of a Fano polytope},
url = {http://eudml.org/doc/10136},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Casagrande, Cinzia
TI - The number of vertices of a Fano polytope
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 121
EP - 130
AB - Let $X$ be a Gorenstein, $\mathbb{Q}$-factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of $X$ in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.
LA - eng
KW - toric varieties; Fano varieties; reflexive polytopes; Fano polytopes; toric variety; Fano variety; reflexive polytope; Fano polytope
UR - http://eudml.org/doc/10136
ER -
References
top- Marco Andreatta, Elena Chierici, Gianluca Occhetta, Generalized Mukai conjecture for special Fano varieties, Central European Journal of Mathematics 2 (2004), 272-293 Zbl1068.14049MR2113552
- Victor V. Batyrev, Toric Fano threefolds, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 45 (1981), 704-717 Zbl0478.14032MR631434
- Victor V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, Journal of Algebraic Geometry 3 (1994), 493-535 Zbl0829.14023MR1269718
- Victor V. Batyrev, On the classification of toric Fano 4-folds, Journal of Mathematical Sciences (New York) 94 (1999), 1021-1050 Zbl0929.14024MR1703904
- Laurent Bonavero, Cinzia Casagrande, Olivier Debarre, Stéphane Druel, Sur une conjecture de Mukai, Commentarii Mathematici Helvetici 78 (2003), 601-626 Zbl1044.14019MR1998396
- Cinzia Casagrande, Toric Fano varieties and birational morphisms, International Mathematics Research Notices 27 (2003), 1473-1505 Zbl1083.14516MR1976232
- Koji Cho, Yoichi Miyaoka, Nick Shepherd-Barron, Characterizations of projective space and applications to complex symplectic geometry, Higher Dimensional Birational Geometry 35 (2002), 1-89, Mathematical Society of Japan Zbl1063.14065MR1929791
- Olivier Debarre, Higher-Dimensional Algebraic Geometry, (2001), Springer Verlag Zbl0978.14001MR1841091
- Olivier Debarre, Fano varieties, Higher Dimensional Varieties and Rational Points 12 (2003), 93-132, Springer Verlag, Budapest, 2001 MR2011745
- Günter Ewald, Combinatorial Convexity and Algebraic Geometry, 168 (1996), Springer Verlag Zbl0869.52001MR1418400
- Branko Grünbaum, Convex Polytopes, 221 (2003), Springer Verlag Zbl1024.52001MR2038487
- Benjamin Nill, Complete toric varieties with reductive automorphism group, (2004) Zbl1091.14011
- Benjamin Nill, Gorenstein toric Fano varieties, Manuscripta Mathematica 116 (2005), 183-210 Zbl1067.14052MR2122419
- Gianluca Occhetta, A characterization of products of projective spaces, (2003) Zbl1059.14023
- Hiroshi Sato, Toward the classification of higher-dimensional toric Fano varieties, Tôhoku Mathematical Journal 52 (2000), 383-413 Zbl1028.14015MR1772804
- V. E. Voskresenskiĭ, Alexander Klyachko, Toric Fano varieties and systems of roots, Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya 48 (1984), 237-263 Zbl0572.14029MR740791
- Keiichi Watanabe, Masayuki Watanabe, The classification of Fano 3-folds with torus embeddings, Tokyo Journal of Mathematics 5 (1982), 37-48 Zbl0581.14028MR670903
- Jarosław A. Wiśniewski, On a conjecture of Mukai, Manuscripta Mathematica 68 (1990), 135-141 Zbl0715.14033MR1063222
- Jarosław A. Wiśniewski, Toric Mori theory and Fano manifolds, Geometry of Toric Varieties 6 (2002), 249-272, Société Mathématique de France Zbl1053.14002MR2063740
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.