Fano horospherical varieties
Bulletin de la Société Mathématique de France (2008)
- Volume: 136, Issue: 2, page 195-225
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] V. Alexeev & M. Brion – « Boundedness of spherical Fano varieties », in The Fano Conference, Univ. Torino, Turin, 2004, p. 69–80. Zbl1087.14028MR2112568
- [2] —, « Toric degenerations of spherical varieties », Selecta Math. (N.S.) 10 (2004), p. 453–478. Zbl1078.14075MR2134452
- [3] V. V. Batyrev – « Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties », J. Algebraic Geom.3 (1994), p. 493–535. Zbl0829.14023MR1269718
- [4] A. A. Borisov & L. A. Borisov – « Singular toric Fano three-folds », Mat. Sb.183 (1992), p. 134–141. Zbl0786.14028MR1166957
- [5] N. Bourbaki – Groupes et algèbres de Lie, C.C.L.S., 1975, chapitres 7 et 8. Zbl0483.22001
- [6] M. Brion – « Sur l’image de l’application moment », in Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986), Lecture Notes in Math., vol. 1296, Springer, 1987, p. 177–192. Zbl0667.58012MR932055
- [7] —, « Groupe de Picard et nombres caractéristiques des variétés sphériques », Duke Math. J.58 (1989), p. 397–424. Zbl0701.14052MR1016427
- [8] —, « Curves and divisors in spherical varieties », in Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press, 1997, p. 21–34. Zbl0883.14024MR1635672
- [9] C. Casagrande – « The number of vertices of a Fano polytope », Ann. Inst. Fourier (Grenoble) 56 (2006), p. 121–130. Zbl1095.52005MR2228683
- [10] J. van der Corput – « Verallgemeinerung einer Mordellschen Beweismethode in der Geometrie der Zahlen II », Acta Arith.2 (1936), p. 145–146. Zbl0015.29404
- [11] O. Debarre – Higher-dimensional algebraic geometry, Universitext, Springer, 2001. Zbl0978.14001MR1841091
- [12] —, « Fano varieties », in Higher dimensional varieties and rational points (Budapest, 2001), Bolyai Soc. Math. Stud., vol. 12, Springer, 2003, p. 93–132. Zbl1080.14521MR2011745
- [13] W. Fulton – Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, 1993, The William H. Roever Lectures in Geometry. Zbl0813.14039MR1234037
- [14] R. Hartshorne – Algebraic geometry, Springer, 1977, Graduate Texts in Mathematics, No. 52. Zbl0367.14001MR463157
- [15] D. Hensley – « Lattice vertex polytopes with interior lattice points », Pacific J. Math.105 (1983), p. 183–191. Zbl0471.52006MR688412
- [16] J. E. Humphreys – Linear algebraic groups, Springer, 1975, Graduate Texts in Mathematics, No. 21. Zbl0325.20039MR396773
- [17] F. Knop – « The Luna-Vust theory of spherical embeddings », in Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, 1991, p. 225–249. Zbl0812.20023MR1131314
- [18] J. C. Lagarias & G. M. Ziegler – « Bounds for lattice polytopes containing a fixed number of interior points in a sublattice », Canad. J. Math.43 (1991), p. 1022–1035. Zbl0752.52010MR1138580
- [19] D. Luna & T. Vust – « Plongements d’espaces homogènes », Comment. Math. Helv.58 (1983), p. 186–245. Zbl0545.14010MR705534
- [20] B. Nill – « Gorenstein toric Fano varieties », Manuscripta Math.116 (2005), p. 183–210. Zbl1067.14052MR2122419
- [21] T. Oda – Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 15, Springer, 1988, An introduction to the theory of toric varieties. Zbl0628.52002MR922894
- [22] B. Pasquier – « Variétés horosphériques de Fano », Thèse, Université Joseph-Fourier, Grenoble I, 2006, http://www-fourier.ujf-grenoble.fr/~bpasquie/these.pdf. Zbl1162.14030
- [23] —, « Smooth projective horospherical varieties with Picard number », preprint arXiv : math/0703576, 2007.
- [24] T. A. Springer – Linear algebraic groups, second éd., Progress in Mathematics, vol. 9, Birkhäuser, 1998. Zbl0453.14022MR1642713
- [25] D. Timashev – « Homogeneous spaces and equivariant embeddings », preprint arXiv :math.AG/0602228, 2006. Zbl1237.14057MR2797018