Non-deformability of entire curves in projective hypersurfaces of high degree

Olivier Debarre[1]; Gianluca Pacienza[2]; Mihai Păun[3]

  • [1] Université L. Pasteur et CNRS Institut de Recherche Mathématique Avancée 7, rue René Descartes 67084 Strasbourg Cedex (France)
  • [2] Institut de Recherche Mathématique Avancée Université L. Pasteur et CNRS 7, rue René Descartes 67084 Strasbourg Cédex (France)
  • [3] Université Henri Poincaré Nancy 1 Institut Élie Cartan B.P. 239 54506 Vandœuvre-lès-Nancy Cedex (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 1, page 247-253
  • ISSN: 0373-0956

Abstract

top
In this article, we prove that there does not exist a family of maximal rank of entire curves in the universal family of hypersurfaces of degree d 2 n in the complex projective space n . This can be seen as a weak version of the Kobayashi conjecture asserting that a general projective hypersurface of high degree is hyperbolic in the sense of Kobayashi.

How to cite

top

Debarre, Olivier, Pacienza, Gianluca, and Păun, Mihai. "Non-deformability of entire curves in projective hypersurfaces of high degree." Annales de l’institut Fourier 56.1 (2006): 247-253. <http://eudml.org/doc/10140>.

@article{Debarre2006,
abstract = {In this article, we prove that there does not exist a family of maximal rank of entire curves in the universal family of hypersurfaces of degree $d\ge 2n$ in the complex projective space $\{\mathbb\{P\}\}^n$. This can be seen as a weak version of the Kobayashi conjecture asserting that a general projective hypersurface of high degree is hyperbolic in the sense of Kobayashi.},
affiliation = {Université L. Pasteur et CNRS Institut de Recherche Mathématique Avancée 7, rue René Descartes 67084 Strasbourg Cedex (France); Institut de Recherche Mathématique Avancée Université L. Pasteur et CNRS 7, rue René Descartes 67084 Strasbourg Cédex (France); Université Henri Poincaré Nancy 1 Institut Élie Cartan B.P. 239 54506 Vandœuvre-lès-Nancy Cedex (France)},
author = {Debarre, Olivier, Pacienza, Gianluca, Păun, Mihai},
journal = {Annales de l’institut Fourier},
keywords = {projective hypersurfaces; entire curves; Kobayashi hyperbolicity; hyperbolic; Kobayashi conjecture; entire curve},
language = {eng},
number = {1},
pages = {247-253},
publisher = {Association des Annales de l’institut Fourier},
title = {Non-deformability of entire curves in projective hypersurfaces of high degree},
url = {http://eudml.org/doc/10140},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Debarre, Olivier
AU - Pacienza, Gianluca
AU - Păun, Mihai
TI - Non-deformability of entire curves in projective hypersurfaces of high degree
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 1
SP - 247
EP - 253
AB - In this article, we prove that there does not exist a family of maximal rank of entire curves in the universal family of hypersurfaces of degree $d\ge 2n$ in the complex projective space ${\mathbb{P}}^n$. This can be seen as a weak version of the Kobayashi conjecture asserting that a general projective hypersurface of high degree is hyperbolic in the sense of Kobayashi.
LA - eng
KW - projective hypersurfaces; entire curves; Kobayashi hyperbolicity; hyperbolic; Kobayashi conjecture; entire curve
UR - http://eudml.org/doc/10140
ER -

References

top
  1. R. Brody, Compact manifolds in hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219 Zbl0416.32013MR470252
  2. M. Brunella, On entire curves tangent to a foliation Zbl1147.32019
  3. M. Brunella, Courbes entières dans les surfaces algébriques complexes (d’après McQuillan, Demailly-El Goul, ), Astérisque (2002), 39-61 Zbl1031.14014MR1975174
  4. H. Clemens, Lower bounds on genera of subvarieties of generic hypersurfaces, Comm. Algebra (2003), 3673-3711 Zbl1071.14011MR2007380
  5. Jean-Pierre Demailly, Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic geometry—Santa Cruz 1995 62 (1997), 285-360, Amer. Math. Soc., Providence, RI Zbl0919.32014MR1492539
  6. J. El Goul J.-P. Demailly, Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math. 122 (2000), 515-546 Zbl0966.32014MR1759887
  7. S. Kobayashi, Hyperbolic complex spaces, (1998), Springer-Verlag, Berlin Zbl0917.32019MR1635983
  8. M. McQuillan, Holomorphic curves on hyperplane sections of 3 -folds, Geom. Funct. Anal. (1999), 370-392 Zbl0951.14014MR1692470
  9. E. Rousseau, Weak analytic hyperbolicity of generic hypersurfaces of high degree in the complex projective space of dimension 4 Zbl1132.32010
  10. T. Ochiai S. Kobayashi, Meromorphic mappings onto compact complex spaces of general type, Invent. Math. (1975), 7-16 Zbl0331.32020MR402127
  11. Y.T. Siu, Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel (2004), 543-566, Springer, Berlin Zbl1076.32011MR2077584
  12. C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geom. (1996), 200-214 Zbl0883.14022MR1420353
  13. C. Voisin, A correction: “On a conjecture of Clemens on rational curves on hypersurfaces”, J. Diff. Geom. (1998), 601-611 Zbl0994.14026MR1669712

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.