The bar automorphism in quantum groups and geometry of quiver representations
Philippe Caldero[1]; Markus Reineke[2]
- [1] Université Claude Bernard Lyon I Département de mathématiques 69622 Villeurbanne Cedex (France)
- [2] Universität Münster Mathematisches Institut 48149 Münster (Germany)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 1, page 255-267
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. Math. 121 (1996), 245-287 Zbl0862.16007MR1402728
- P. Caldero, A multiplicative property of quantum flag minors, Representation Theory 7 (2003), 164-176 Zbl1030.17009MR1973370
- P. Caldero, R. Schiffler, Rational smoothness of varieties of representations for quivers of Dynkin type, Ann. Inst. Fourier (Grenoble) 54 (2004), 295-315 Zbl1126.17013MR2073836
- D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184 Zbl0499.20035MR560412
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498 Zbl0703.17008MR1035415
- G. Lusztig, Canonical bases arising from quantized enveloping algebras II, Common trends in mathematics and quantum field theories (1990), 175-201, EguchiT.T. Zbl0776.17012MR1182165
- G. Lusztig, Introduction to quantum groups, 110 (1993), Birkhäuser, Boston Zbl0788.17010MR1227098
- M. Reineke, Multiplicative properties of dual canonical bases of quantum groups, J. Algebra 211 (1999), 134-149 Zbl0917.17008MR1656575
- C. Riedtmann, Lie algebras generated by indecomposables, J. Algebra 170 (1994), 526-546 Zbl0841.16018MR1302854
- C. M. Ringel, Tame algebras and integral quadratic forms, 1099 (1984), Springer, Berlin Zbl0546.16013MR774589
- C. M. Ringel, Hall algebras, Topics in Algebra, Part I 26 (1990), 433-447, Warsaw, 1988 Zbl0778.16004MR1171248
- C. M. Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), 583-591 Zbl0735.16009MR1062796