Rational smoothness of varieties of representations for quivers of Dynkin type

Philippe Caldero[1]; Ralf Schiffler

  • [1] Université Claude Bernard Lyon I, Département de Mathématiques, 69622 Villeurbanne (France), Carleton University, School of mathematics and statistics, 1125 Colonel By drive, room 4302 Herzberg building, Ottawa, Ontario K1S 5B6 (Canada)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 2, page 295-315
  • ISSN: 0373-0956

Abstract

top
We study the Zariski closures of orbits of representations of quivers of type A , D ou E . With the help of Lusztig’s canonical base, we characterize the rationally smooth orbit closures and prove in particular that orbit closures are smooth if and only if they are rationally smooth.

How to cite

top

Caldero, Philippe, and Schiffler, Ralf. "Rational smoothness of varieties of representations for quivers of Dynkin type." Annales de l’institut Fourier 54.2 (2004): 295-315. <http://eudml.org/doc/116112>.

@article{Caldero2004,
abstract = {We study the Zariski closures of orbits of representations of quivers of type $A$, $D$ ou $E$. With the help of Lusztig’s canonical base, we characterize the rationally smooth orbit closures and prove in particular that orbit closures are smooth if and only if they are rationally smooth.},
affiliation = {Université Claude Bernard Lyon I, Département de Mathématiques, 69622 Villeurbanne (France), Carleton University, School of mathematics and statistics, 1125 Colonel By drive, room 4302 Herzberg building, Ottawa, Ontario K1S 5B6 (Canada)},
author = {Caldero, Philippe, Schiffler, Ralf},
journal = {Annales de l’institut Fourier},
keywords = {quantum groups; representations of quivers; singularities; canonical basis},
language = {eng},
number = {2},
pages = {295-315},
publisher = {Association des Annales de l'Institut Fourier},
title = {Rational smoothness of varieties of representations for quivers of Dynkin type},
url = {http://eudml.org/doc/116112},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Caldero, Philippe
AU - Schiffler, Ralf
TI - Rational smoothness of varieties of representations for quivers of Dynkin type
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 2
SP - 295
EP - 315
AB - We study the Zariski closures of orbits of representations of quivers of type $A$, $D$ ou $E$. With the help of Lusztig’s canonical base, we characterize the rationally smooth orbit closures and prove in particular that orbit closures are smooth if and only if they are rationally smooth.
LA - eng
KW - quantum groups; representations of quivers; singularities; canonical basis
UR - http://eudml.org/doc/116112
ER -

References

top
  1. S. Billey, V. Lakshmibai, Singular loci of schubert varieties, 182 (2000), Birkhäuser, Boston-Basel-Berlin Zbl0959.14032MR1782635
  2. K. Bongartz, Degenerations for representations of tame quivers, Annales Scientifiques de L'école Normale Supérieure (IV) 28 (1995), 647-668 Zbl0844.16007MR1341664
  3. W. Borho, R. MacPherson, Partial resolutions of nilpotent varieties, Analyse et topologie sur les espaces singuliers II 101-102 (1983), 23-74 Zbl0576.14046MR737927
  4. R. Bédard, R. Schiffler, Rational smoothness of varieties of representations for quivers of type A , Represent. Theory 7 (2003), 481-548 Zbl1060.17005MR2017066
  5. M. Brion, Equivariant cohomology and equivariant intersection theory, Representation Theory and Algebraic geometry (1998), 1-37, Kluwer Acad. Publ Zbl0946.14008MR1649623
  6. Ph. Caldero, A multiplicative property of quantum flag minors, Representation Theory 7 (2003), 164-176 Zbl1030.17009MR1973370
  7. J. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic groups and their generalizations (1994), 53-62, American Mathematical Society, Providence Zbl0818.14020MR1278700
  8. V.I. Danilov, Cohomology of algebraic varieties, ch. Algebraic geometry II (1996), 1-125 Zbl0832.14009MR1392957
  9. V. Deodhar, Local Poincaré duality and nonsingularities of Schubert varieties, Comm. Alg 13 (1985), 1379-1388 Zbl0579.14046MR788771
  10. J.A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math 120 (1995), 361-377 Zbl0836.16021MR1329046
  11. M. Kashiwara, On crystal bases of the q -analogue of the universal enveloping algebra, Duke Math. J 63 (1991), 465-516 Zbl0739.17005MR1115118
  12. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc 3 (1990), 447-498 Zbl0703.17008MR1035415
  13. G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc 3 (1990), 257-296 Zbl0695.16006MR1013053
  14. G. Lusztig, Introduction to quantum groups, 110 (1993), Birkhäuser Zbl0788.17010MR1227098
  15. R. Nörenberg, From elementary calculations to Hall polynomials Zbl1060.16018MR1987346
  16. M. Reineke, Multiplicative properties of dual canonical bases of quantum groups, Journal of Algebra 211 (1999), 134-149 Zbl0917.17008MR1656575
  17. C. Riedtmann, Lie algebras generated by indecomposables, Journal of algebra 170 (1994), 526-546 Zbl0841.16018MR1302854
  18. C. M. Ringel, Hall algebras, Banach Center Publ 26 (1990), 433-447 Zbl0778.16004MR1171248
  19. C. M. Ringel, Hall algebras revisited, 7 (1993), 171-176 Zbl0852.17009MR1261907

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.