Rational smoothness of varieties of representations for quivers of Dynkin type
Philippe Caldero[1]; Ralf Schiffler
- [1] Université Claude Bernard Lyon I, Département de Mathématiques, 69622 Villeurbanne (France), Carleton University, School of mathematics and statistics, 1125 Colonel By drive, room 4302 Herzberg building, Ottawa, Ontario K1S 5B6 (Canada)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 2, page 295-315
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- S. Billey, V. Lakshmibai, Singular loci of schubert varieties, 182 (2000), Birkhäuser, Boston-Basel-Berlin Zbl0959.14032MR1782635
- K. Bongartz, Degenerations for representations of tame quivers, Annales Scientifiques de L'école Normale Supérieure (IV) 28 (1995), 647-668 Zbl0844.16007MR1341664
- W. Borho, R. MacPherson, Partial resolutions of nilpotent varieties, Analyse et topologie sur les espaces singuliers II 101-102 (1983), 23-74 Zbl0576.14046MR737927
- R. Bédard, R. Schiffler, Rational smoothness of varieties of representations for quivers of type , Represent. Theory 7 (2003), 481-548 Zbl1060.17005MR2017066
- M. Brion, Equivariant cohomology and equivariant intersection theory, Representation Theory and Algebraic geometry (1998), 1-37, Kluwer Acad. Publ Zbl0946.14008MR1649623
- Ph. Caldero, A multiplicative property of quantum flag minors, Representation Theory 7 (2003), 164-176 Zbl1030.17009MR1973370
- J. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic groups and their generalizations (1994), 53-62, American Mathematical Society, Providence Zbl0818.14020MR1278700
- V.I. Danilov, Cohomology of algebraic varieties, ch. Algebraic geometry II (1996), 1-125 Zbl0832.14009MR1392957
- V. Deodhar, Local Poincaré duality and nonsingularities of Schubert varieties, Comm. Alg 13 (1985), 1379-1388 Zbl0579.14046MR788771
- J.A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math 120 (1995), 361-377 Zbl0836.16021MR1329046
- M. Kashiwara, On crystal bases of the -analogue of the universal enveloping algebra, Duke Math. J 63 (1991), 465-516 Zbl0739.17005MR1115118
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc 3 (1990), 447-498 Zbl0703.17008MR1035415
- G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc 3 (1990), 257-296 Zbl0695.16006MR1013053
- G. Lusztig, Introduction to quantum groups, 110 (1993), Birkhäuser Zbl0788.17010MR1227098
- R. Nörenberg, From elementary calculations to Hall polynomials Zbl1060.16018MR1987346
- M. Reineke, Multiplicative properties of dual canonical bases of quantum groups, Journal of Algebra 211 (1999), 134-149 Zbl0917.17008MR1656575
- C. Riedtmann, Lie algebras generated by indecomposables, Journal of algebra 170 (1994), 526-546 Zbl0841.16018MR1302854
- C. M. Ringel, Hall algebras, Banach Center Publ 26 (1990), 433-447 Zbl0778.16004MR1171248
- C. M. Ringel, Hall algebras revisited, 7 (1993), 171-176 Zbl0852.17009MR1261907