Stability of higher order singular points of Poisson manifolds and Lie algebroids
Jean-Paul Dufour[1]; Aïssa Wade[2]
- [1] Université Montpellier 2 Département de Mathématiques Place Eugène Bataillon 34095 Montpellier Cedex 5 (France)
- [2] Penn State University Department of Mathematics University Park PA 16802 (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 3, page 545-559
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDufour, Jean-Paul, and Wade, Aïssa. "Stability of higher order singular points of Poisson manifolds and Lie algebroids." Annales de l’institut Fourier 56.3 (2006): 545-559. <http://eudml.org/doc/10157>.
@article{Dufour2006,
abstract = {We study the stability of singular points for smooth Poisson structures as well as general Lie algebroids. We give sufficient conditions for stability lying on the first-order approximation (not necessarily linear) of a given Poisson structure or Lie algebroid at a singular point. The main tools used here are the classical Lichnerowicz-Poisson cohomology and the deformation cohomology for Lie algebroids recently introduced by Crainic and Moerdijk. We also provide several examples of stable singular points of order $k \ge 1$ for Poisson structures and Lie algebroids. Finally, we apply our results to pre-symplectic leaves of Dirac manifolds.},
affiliation = {Université Montpellier 2 Département de Mathématiques Place Eugène Bataillon 34095 Montpellier Cedex 5 (France); Penn State University Department of Mathematics University Park PA 16802 (USA)},
author = {Dufour, Jean-Paul, Wade, Aïssa},
journal = {Annales de l’institut Fourier},
keywords = {Poisson structure; Lie algebroid; Lichnerowicz-Poisson cohomology; stable point; stability of singular points; Poisson manifolds; Lie algebroids},
language = {eng},
number = {3},
pages = {545-559},
publisher = {Association des Annales de l’institut Fourier},
title = {Stability of higher order singular points of Poisson manifolds and Lie algebroids},
url = {http://eudml.org/doc/10157},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Dufour, Jean-Paul
AU - Wade, Aïssa
TI - Stability of higher order singular points of Poisson manifolds and Lie algebroids
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 3
SP - 545
EP - 559
AB - We study the stability of singular points for smooth Poisson structures as well as general Lie algebroids. We give sufficient conditions for stability lying on the first-order approximation (not necessarily linear) of a given Poisson structure or Lie algebroid at a singular point. The main tools used here are the classical Lichnerowicz-Poisson cohomology and the deformation cohomology for Lie algebroids recently introduced by Crainic and Moerdijk. We also provide several examples of stable singular points of order $k \ge 1$ for Poisson structures and Lie algebroids. Finally, we apply our results to pre-symplectic leaves of Dirac manifolds.
LA - eng
KW - Poisson structure; Lie algebroid; Lichnerowicz-Poisson cohomology; stable point; stability of singular points; Poisson manifolds; Lie algebroids
UR - http://eudml.org/doc/10157
ER -
References
top- M. Bordemann, A. Makhlouf, T. Petit, Déformation par quantification et rigidité des algèbres enveloppantes, J. Algebra 285 (2005), 623-648 Zbl1099.17010MR2125456
- C. Camacho, A. Lins Neto, The topology of integrable differential forms near a singularity, Inst. Hautes Études Sci. Publ. Math. 55 (1982), 5-35 Zbl0505.58026MR672180
- T. Courant, Dirac structures, Trans. A.M.S. 319 (1990), 631-661 Zbl0850.70212MR998124
- M. Crainic, R.-L. Fernandès
- M. Crainic, I. Moerdijk, Deformations of Lie brackets: cohomological aspects Zbl1159.58011
- J.-P. Dufour, A. Haraki, Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 137-140 Zbl0719.58001MR1086519
- J.-P. Dufour, A. Wade, On the local structure of Dirac manifolds Zbl1142.53063
- J.-P. Dufour, A. Wade, Formes normales de structures de Poisson ayant un -jet nul en un point, J. Geom. Phys. 26 (1998), 79-96 Zbl0958.37021MR1626032
- Jean-Paul Dufour, Nguyen Tien Zung, Poisson structures and their normal forms, 242 (2005), Birkhäuser Verlag, Basel Zbl1082.53078MR2178041
- R.-L. Fernandès, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), 119-179 Zbl1007.22007MR1929305
- M. Golubitsky, V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics 14 (1973), Springer-Verlag, New York-Heidelberg Zbl0294.58004MR341518
- G. Hochschild, J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. 57 (1953), 591-603 Zbl0053.01402MR54581
- Jean-Louis Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque (1985), 257-271 Zbl0615.58029MR837203
- P. Monnier, Une cohomologie associée à une fonction : applications aux cohomologies de Poisson et de Nambu-Poisson, (2001)
- P. Monnier, A cohomology attached to a function, Differential Geom. Appl. 22 (2005), 49-68 Zbl1068.53056MR2106376
- O. Radko, A classification of topologically stable Poisson structures on a compact oriented surface, J. Symplectic Geom. 1 (2002), 523-542 Zbl1093.53087MR1959058
- A. Cannas da Silva, A. Weinstein, Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes 10 (1999), American Mathematical Society, Providence, RI. Zbl1135.58300MR1747916
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.