Basic constructions in rational homotopy theory of function spaces
Urtzi Buijs[1]; Aniceto Murillo[2]
- [1] Universidad de Málaga Departamento de Algebra Geometría y Topología Ap. 59, 29080 Málaga (Spain)
- [2] Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Ap. 59, 29080 Málaga, Spain
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 3, page 815-838
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBuijs, Urtzi, and Murillo, Aniceto. "Basic constructions in rational homotopy theory of function spaces." Annales de l’institut Fourier 56.3 (2006): 815-838. <http://eudml.org/doc/10165>.
@article{Buijs2006,
abstract = {Via the Bousfield-Gugenheim realization functor, and starting from the Brown-Szczarba model of a function space, we give a functorial framework to describe basic objects and maps concerning the rational homotopy type of function spaces and its path components.},
affiliation = {Universidad de Málaga Departamento de Algebra Geometría y Topología Ap. 59, 29080 Málaga (Spain); Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Ap. 59, 29080 Málaga, Spain},
author = {Buijs, Urtzi, Murillo, Aniceto},
journal = {Annales de l’institut Fourier},
keywords = {Function space; mapping space; Sullivan model; rational homotopy theory; function space},
language = {eng},
number = {3},
pages = {815-838},
publisher = {Association des Annales de l’institut Fourier},
title = {Basic constructions in rational homotopy theory of function spaces},
url = {http://eudml.org/doc/10165},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Buijs, Urtzi
AU - Murillo, Aniceto
TI - Basic constructions in rational homotopy theory of function spaces
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 3
SP - 815
EP - 838
AB - Via the Bousfield-Gugenheim realization functor, and starting from the Brown-Szczarba model of a function space, we give a functorial framework to describe basic objects and maps concerning the rational homotopy type of function spaces and its path components.
LA - eng
KW - Function space; mapping space; Sullivan model; rational homotopy theory; function space
UR - http://eudml.org/doc/10165
ER -
References
top- A. K. Bousfield, V. K. A. M. Gugenheim, On PL De Rham theory and rational homotopy type, 179 (8) (1976), Memoirs of the Amer. Math. Soc. Zbl0338.55008MR425956
- E. H. Brown, R. H. Szczarba, Continuous cohomology and real homotopy type, Trans. Amer. Math. Soc. 31 (1989), 57-106 Zbl0671.55006MR929667
- E. H. Brown, R. H. Szczarba, On the rational homotopy type of function spaces, Trans. Amer. Math. Soc. 349 (1997), 4931-4951 Zbl0927.55012MR1407482
- Y. Félix, Rational category of the space of sections of a nilpotent bundle, Comment. Math. Helvetici 65 (1990), 615-622 Zbl0715.55009MR1078101
- Y. Félix, S. Halperin, J.C. Thomas, Rational Homotopy Theory, G.T.M. 205 (2000), Springer Zbl0961.55002MR1802847
- P. G. Goerss, J. F. Jardine, Simplicial Homotopy Theory, Progress in Mathematics 174 (1999), Birkhäuser, Basel-Boston-Berlin Zbl0949.55001MR1711612
- A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), 609-620 Zbl0508.55019MR667163
- S. Halperin, Lecture on Minimal Models, 230 (1983), Mémoires de la Société Mathématique de France Zbl0536.55003
- P. Hilton, G. Mislin, J. Roitberg, Localization of nilpotent groups and spaces, 15 (1975), North Holland Mathematical Studies Zbl0323.55016MR478146
- K. Kuribayashi, A rational model for the evaluation map, (2005) Zbl1097.18004
- J. P. May, Simplicial Objects in Algebraic Topology, (1992), Chicago Lectures in Mathematics Zbl0769.55001MR1206474
- J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 342 (1994), 895-915
- S. Smith, Rational homotopy of the space of self-maps of complexes with finitely many homotopy groups, Trans. Amer. Math. Soc. 90 (1994), 272-280 Zbl0802.55009
- S. Smith, Rational evaluation subgroups, Math. Zeit. 221 (1996), 387-400 Zbl0855.55009MR1381587
- D. Sullivan, Infinitesimal computations in Topology, Publ. Math. de l’I.H.E.S. 47 (1978), 269-331 Zbl0374.57002MR646078
- R. Thom, L’homologie des espaces fonctionnels, Colloque de topologie algébrique (1957), 29-39 Zbl0077.36301MR89408
- M. Vigué-Poirrier, Sur l’homotopie rationnelle des espaces fonctionnels, Manuscripta Math. 56 (1986), 177-191 Zbl0597.55008MR850369
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.