A categorical proof of the equivalence of local compactness and exponentiability in locale theory
Let X be a compact Hausdorff topological space. We show that multiplication in the algebra C(X) is open iff dim X < 1. On the other hand, the existence of non-empty open sets U,V ⊂ C(X) satisfying Int(U· V) = ∅ is equivalent to dim X > 1. The preimage of every set of the first category in C(X) under the multiplication map is of the first category in C(X) × C(X) iff dim X ≤ 1.
We prove that for each countably infinite, regular space X such that is a -space, the topology of is determined by the class of spaces embeddable onto closed subsets of . We show that , whenever Borel, is of an exact multiplicative class; it is homeomorphic to the absorbing set for the multiplicative Borel class if . For each ordinal α ≥ 2, we provide an example such that is homeomorphic to .
We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions onto × ℝcp(X)cp(X). One of these examples is compact. This answers some questions of Arkhangel’skiĭ.
A metric space is called a space provided each continuous function on into a metric target space is uniformly continuous. We introduce a class of metric spaces that play, relative to the boundedly compact metric spaces, the same role that spaces play relative to the compact metric spaces.
Let X be an infinite, locally connected, locally compact separable metrizable space. The space C(X) of real-valued continuous functions defined on X with the compact-open topology is a separable Fréchet space, so it is homeomorphic to the psuedo-interior s = (−1, 1)ℕ of the Hilbert cube Q = [−1, 1]ℕ. In this paper, generalizing the Sakai-Uehara’s result to the non-compact case, we construct a natural compactification (X) of C(X) such that the pair ( (X), C(X)) is homeomorphic to (Q, s). In case...
A space is functionally countable if is countable for any continuous function . We will call a space exponentially separable if for any countable family of closed subsets of , there exists a countable set such that whenever and . Every exponentially separable space is functionally countable; we will show that for some nice classes of spaces exponential separability coincides with functional countability. We will also establish that the class of exponentially separable spaces has...
We prove a non-archimedean Dugundji extension theorem for the spaces of continuous bounded functions on an ultranormal space with values in a non-archimedean non-trivially valued complete field . Assuming that is discretely valued and is a closed subspace of we show that there exists an isometric linear extender if is collectionwise normal or is Lindelöf or is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace of an ultraregular...