Anticyclotomic Iwasawa theory of CM elliptic curves

Adebisi Agboola[1]; Benjamin Howard[2]

  • [1] University of California Department of Mathematics Santa Barbara, CA 93106
  • [2] Harvard University Department of Mathematics Cambridge, MA 02138

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 4, page 1001-1048
  • ISSN: 0373-0956

Abstract

top
We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Z p -extension of the CM field, where p is a prime of good, ordinary reduction for E . When the complex L -function of E vanishes to even order, Rubin’s proof of the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the p -power Selmer group over the anticyclotomic extension is a torsion Iwasawa module. When the order of vanishing is odd, work of Greenberg show that it is not a torsion module. In this paper we show that in the case of odd order of vanishing the dual of the Selmer group has rank exactly one, and we prove a form of the Iwasawa main conjecture for the torsion submodule.

How to cite

top

Agboola, Adebisi, and Howard, Benjamin. "Anticyclotomic Iwasawa theory of CM elliptic curves." Annales de l’institut Fourier 56.4 (2006): 1001-1048. <http://eudml.org/doc/10166>.

@article{Agboola2006,
abstract = {We study the Iwasawa theory of a CM elliptic curve $E$ in the anticyclotomic $\mathbf\{Z\}_p$-extension of the CM field, where $p$ is a prime of good, ordinary reduction for $E$. When the complex $L$-function of $E$ vanishes to even order, Rubin’s proof of the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the $p$-power Selmer group over the anticyclotomic extension is a torsion Iwasawa module. When the order of vanishing is odd, work of Greenberg show that it is not a torsion module. In this paper we show that in the case of odd order of vanishing the dual of the Selmer group has rank exactly one, and we prove a form of the Iwasawa main conjecture for the torsion submodule.},
affiliation = {University of California Department of Mathematics Santa Barbara, CA 93106; Harvard University Department of Mathematics Cambridge, MA 02138; Stanford University Department of Mathematics Stanford, CA 94305},
author = {Agboola, Adebisi, Howard, Benjamin},
journal = {Annales de l’institut Fourier},
keywords = {Ellipic curves; Iwasawa theory; main conjecture; anticyclotomic; $p$-adic $L$-function; ellipic curves; anticyclotomic, -adic -function},
language = {eng},
number = {4},
pages = {1001-1048},
publisher = {Association des Annales de l’institut Fourier},
title = {Anticyclotomic Iwasawa theory of CM elliptic curves},
url = {http://eudml.org/doc/10166},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Agboola, Adebisi
AU - Howard, Benjamin
TI - Anticyclotomic Iwasawa theory of CM elliptic curves
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1001
EP - 1048
AB - We study the Iwasawa theory of a CM elliptic curve $E$ in the anticyclotomic $\mathbf{Z}_p$-extension of the CM field, where $p$ is a prime of good, ordinary reduction for $E$. When the complex $L$-function of $E$ vanishes to even order, Rubin’s proof of the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the $p$-power Selmer group over the anticyclotomic extension is a torsion Iwasawa module. When the order of vanishing is odd, work of Greenberg show that it is not a torsion module. In this paper we show that in the case of odd order of vanishing the dual of the Selmer group has rank exactly one, and we prove a form of the Iwasawa main conjecture for the torsion submodule.
LA - eng
KW - Ellipic curves; Iwasawa theory; main conjecture; anticyclotomic; $p$-adic $L$-function; ellipic curves; anticyclotomic, -adic -function
UR - http://eudml.org/doc/10166
ER -

References

top
  1. T. Arnold, Anticyclotomic main conjectures for CM modular forms, (2005) Zbl1138.11047
  2. D. Bertrand, Propriétés arithmétiques de fonctions thêta à plusieurs variables, Number theory, Noordwijkerhout 1983 1068 (1984), 17-22, Springer, Berlin Zbl0546.14029MR756080
  3. J. Coates, Infinite descent on elliptic curves with complex multiplication, Arithmetic and Geometry, Vol. I 35 (1983), 107-137, Birkhäuser Boston, Boston, MA Zbl0541.14026MR717591
  4. Ralph Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99 Zbl0403.12004MR504453
  5. Ralph Greenberg, On the Birch and Swinnerton-Dyer conjecture, Invent. Math. 72 (1983), 241-265 Zbl0546.14015MR700770
  6. Benedict H. Gross, Don B. Zagier, Heegner points and derivatives of L -series, Invent. Math. 84 (1986), 225-320 Zbl0608.14019MR833192
  7. Benjamin Howard, The Iwasawa theoretic Gross-Zagier theorem, Compos. Math. 141 (2005), 811-846 Zbl1207.11072MR2148200
  8. Serge Lang, Algebraic number theory, 110 (1994), Springer-Verlag, New York Zbl0811.11001MR1282723
  9. J. Martinet, Character theory and Artin L -functions, Algebraic number fields: -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (1977), 1-87, Academic Press, London Zbl0359.12015MR447187
  10. B. Mazur, Modular curves and arithmetic, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) (1984), 185-211, PWN, Warsaw Zbl0597.14023MR804682
  11. B. Mazur, J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I 35 (1983), 195-237, Birkhäuser Boston, Boston, MA Zbl0574.14036MR717595
  12. Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183-266 Zbl0245.14015MR444670
  13. Barry Mazur, Karl Rubin, Elliptic curves and class field theory, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) (2002), 185-195, Higher Ed. Press, Beijing Zbl1036.11023MR1957032
  14. Barry Mazur, Karl Rubin, Studying the growth of Mordell-Weil, Doc. Math. (2003), 585-607 (electronic) Zbl1142.11339MR2046609
  15. Barry Mazur, Karl Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004) Zbl1055.11041MR2031496
  16. Bernadette Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. France (N.S.) (1984) Zbl0599.14020MR799673
  17. Bernadette Perrin-Riou, Fonctions L p -adiques, théorie d’Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), 399-456 Zbl0664.12010MR928018
  18. Bernadette Perrin-Riou, Théorie d’Iwasawa et hauteurs p -adiques, Invent. Math. 109 (1992), 137-185 Zbl0781.14013MR1168369
  19. David E. Rohrlich, On L -functions of elliptic curves and anticyclotomic towers, Invent. Math. 75 (1984), 383-408 Zbl0565.14008MR735332
  20. Karl Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68 Zbl0737.11030MR1079839
  21. Karl Rubin, p -adic L -functions and rational points on elliptic curves with complex multiplication, Invent. Math. 107 (1992), 323-350 Zbl0770.11033MR1144427
  22. Karl Rubin, Abelian varieties, p -adic heights and derivatives, Algebra and number theory (Essen, 1992) (1994), 247-266, de Gruyter, Berlin Zbl0829.11034MR1285370
  23. Karl Rubin, Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Arithmetic theory of elliptic curves (Cetraro, 1997) 1716 (1999), 167-234, Springer, Berlin Zbl0991.11028MR1754688
  24. Karl Rubin, Euler systems, 147 (2000), Princeton University Press, Princeton, NJ Zbl0977.11001MR1749177
  25. Ehud de Shalit, Iwasawa theory of elliptic curves with complex multiplication, 3 (1987), Academic Press Inc., Boston, MA Zbl0674.12004MR917944
  26. A. Weil, Automorphic Forms and Dirichlet Series, Dirichlet series and automorphic forms. Lezioni fermiane. 189 (1971), Springer Zbl0218.10046
  27. Rodney I. Yager, On two variable p -adic L -functions, Ann. of Math. (2) 115 (1982), 411-449 Zbl0496.12010MR647813

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.