Chern classes of reductive groups and an adjunction formula

Valentina Kiritchenko[1]

  • [1] State University of New York at Stony Brook Dept. of Mathematics

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 4, page 1225-1256
  • ISSN: 0373-0956

Abstract

top
In this paper, I construct noncompact analogs of the Chern classes for equivariant vector bundles over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction formula for the (topological) Euler characteristic of complete intersections in reductive groups. In the case where a complete intersection is a curve, this formula gives an explicit answer for the Euler characteristic and the genus of the curve. I also prove that the higher Chern classes vanish. The first and the last nontrivial Chern classes are described explicitly. An extension of these results to the setting of spherical homogeneous spaces is outlined.

How to cite

top

Kiritchenko, Valentina. "Chern classes of reductive groups and an adjunction formula." Annales de l’institut Fourier 56.4 (2006): 1225-1256. <http://eudml.org/doc/10171>.

@article{Kiritchenko2006,
abstract = {In this paper, I construct noncompact analogs of the Chern classes for equivariant vector bundles over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction formula for the (topological) Euler characteristic of complete intersections in reductive groups. In the case where a complete intersection is a curve, this formula gives an explicit answer for the Euler characteristic and the genus of the curve. I also prove that the higher Chern classes vanish. The first and the last nontrivial Chern classes are described explicitly. An extension of these results to the setting of spherical homogeneous spaces is outlined.},
affiliation = {State University of New York at Stony Brook Dept. of Mathematics},
author = {Kiritchenko, Valentina},
journal = {Annales de l’institut Fourier},
keywords = {Reductive groups; hyperplane section; Chern classes; complex reductive groups; representations; affine hyperplane sections; regular compactifications; spherical varieties},
language = {eng},
number = {4},
pages = {1225-1256},
publisher = {Association des Annales de l’institut Fourier},
title = {Chern classes of reductive groups and an adjunction formula},
url = {http://eudml.org/doc/10171},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Kiritchenko, Valentina
TI - Chern classes of reductive groups and an adjunction formula
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 1225
EP - 1256
AB - In this paper, I construct noncompact analogs of the Chern classes for equivariant vector bundles over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction formula for the (topological) Euler characteristic of complete intersections in reductive groups. In the case where a complete intersection is a curve, this formula gives an explicit answer for the Euler characteristic and the genus of the curve. I also prove that the higher Chern classes vanish. The first and the last nontrivial Chern classes are described explicitly. An extension of these results to the setting of spherical homogeneous spaces is outlined.
LA - eng
KW - Reductive groups; hyperplane section; Chern classes; complex reductive groups; representations; affine hyperplane sections; regular compactifications; spherical varieties
UR - http://eudml.org/doc/10171
ER -

References

top
  1. Frédéric Bien, Michel Brion, Automorphisms and local rigidity of regular varieties, Compositio Math. 104 (1996), 1-26 Zbl0910.14004MR1420707
  2. E. Bifet, C. de Concini, C. Procesi, Cohomology of regular embeddings, Adv. in Math. 82 (1990), 1-34 Zbl0743.14018MR1057441
  3. P. Bravi, G. Pezzini, Wonderful varieties of type D 
  4. Michel Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math J. 58 (1989), 397-424 Zbl0701.14052MR1016427
  5. Michel Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), 115-143 Zbl0729.14038MR1068418
  6. Michel Brion, The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv. 73 (1998), 137-174 Zbl0935.14029MR1610599
  7. Michel Brion, Ivan Kausz, Vanishing of top equivariant Chern classes of regular embeddings Zbl1119.14044MR2216242
  8. C. de Concini, Equivariant embeddings of homogeneous spaces, Proceedings of the International Congress of Mathematicians (Berkeley, California, USA) 1,2 (1986), 369-377, Amer. Math. Soc., Providence, RI Zbl0697.53044MR934236
  9. C. de Concini, C. Procesi, Complete symmetric varieties I, Invariant theory (Montecatini, 1982) 996 (1983), 1-44, Springer, Berlin Zbl0581.14041MR718125
  10. C. de Concini, C. Procesi, Complete symmetric varieties II Intersection theory, Algebraic groups and related topics (Kyoto/Nagoya, 1983) 6 (1985), 481-513, North-Holland, Amsterdam Zbl0596.14041MR803344
  11. F. Ehlers, Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten, Math. Ann. 218 (1975), 127-157 Zbl0301.14003MR492378
  12. W. Fulton, Intersection theory, (1984), Springer, Berlin Zbl0541.14005MR732620
  13. I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84 (1990), 255-271 Zbl0741.33011MR1080980
  14. P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0408.14001MR507725
  15. M. Kapranov, Hypergeometric functions on reductive groups, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) (1998), 236-281, World Sci. Publishing, River Edge, NJ Zbl0987.33008MR1672049
  16. Kiumars Kaveh, Morse theory and Euler characteristic of sections of spherical varieties, Transformation Groups 9 (2004), 47-63 Zbl1077.14061MR2130602
  17. B. Ya. Kazarnovskii, Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations, Funct. Anal. Appl. 21 (1987), 319-321 Zbl0662.22014MR925078
  18. A. G. Khovanskii, Newton polyhedra, and the genus of complete intersections, Funct. Anal. Appl. 12 (1978), 38-46 Zbl0406.14035MR487230
  19. Valentina Kiritchenko, A Gauss-Bonnet theorem, Chern classes and an adjunction formula for reductive groups, (2004) Zbl1120.14005
  20. S. L. Kleiman, The transversality of a general translate, Compositio Mathematica 28 (1974), 287-297 Zbl0288.14014MR360616
  21. Friedrich Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
  22. Friedrich Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), 153-174 Zbl0862.14034MR1311823
  23. D. Luna, Sur les plongements de Demazure, J. Algebra 258 (2002), 205-215 Zbl1014.17009MR1958903
  24. R. W. Richardson, Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math. 16 (1972), 6-14 Zbl0242.14010MR294336
  25. Alvaro Rittatore, Reductive embeddings are Cohen-Macaulay, Proc. Amer. Math. Soc. 131 (2003), 675-684 Zbl1071.14518MR1937404
  26. D. Timashev, Equivariant compactifications of reductive groups, Sb. Math. 194 (2003), 589-616 Zbl1074.14043MR1992080

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.