The transversality of a general translate

Steven L. Kleiman

Compositio Mathematica (1974)

  • Volume: 28, Issue: 3, page 287-297
  • ISSN: 0010-437X

How to cite


Kleiman, Steven L.. "The transversality of a general translate." Compositio Mathematica 28.3 (1974): 287-297. <>.

author = {Kleiman, Steven L.},
journal = {Compositio Mathematica},
language = {eng},
number = {3},
pages = {287-297},
publisher = {Noordhoff International Publishing},
title = {The transversality of a general translate},
url = {},
volume = {28},
year = {1974},

AU - Kleiman, Steven L.
TI - The transversality of a general translate
JO - Compositio Mathematica
PY - 1974
PB - Noordhoff International Publishing
VL - 28
IS - 3
SP - 287
EP - 297
LA - eng
UR -
ER -


  1. [1] M. Golubitsky and V. Guillemin: Stable mappings and their singularities. Graduate texts in Mathematicas14Springer-Verlag (1973). Zbl0294.58004MR341518
  2. [2] A. Grothendieck and J. Dieudonné: Eléments de géométrie algébrique. Chapitre IV, 2eme, 3eme, 4e parties, Publ. Math. No. 24, 28, 32 IHES (1965, 1966, 1967) (cited EGA IV2, EGA IV3, EGA IV4). 
  3. [3] M. Hochster: Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay. J. Algebra25 (1973) 40-57. Zbl0256.14024MR314833
  4. [4] W.V.D. Hodge and D. Pedoe: Methods of algebraic geometry. Volume II, Cambridge University Press (1952). Zbl0048.14502MR1288306
  5. [5] G. Kempf: Schubert methods with an application to algebraic curves. Lecture notes, Mathematisch CentrumAmsterdam (1971). Zbl0223.14018
  6. [6] S. Kleiman: Geometry on grassmannians and applications to splitting bundles and smoothing cycles, in the 'Zariski volume'. Publ. Math. IHES36 (1969) 281-297. Zbl0208.48501MR265371
  7. [7] D. Laksov: The arithmetic Cohen Macaulay character of Schubert schemes. Acta Math.129 (1972) 1-9. Zbl0233.14012MR382297
  8. [8] C. Musili: Postulation formula for Schubert varieties. J. Indian Math. Soc.36 (1972) 143-171. Zbl0277.14021MR330177
  9. [9] T. Svanes: Coherent cohomology on Schubert subschemes of flag schemes and applications. (to appear). Zbl0308.14008MR419469
  10. [10] O. Zariski: The theorem of Bertini on the variable singular points of a linear system of varieties. TAMS, Vol. 56, No. 1, pp. 130-140, July 1944. Zbl0061.33101MR11572

Citations in EuDML Documents

  1. Israel Vainsencher, Conics in characteristic 2
  2. Dan Laksov, Deformation of determinantal schemes
  3. Anders S. Buch, Pierre-Emmanuel Chaput, Leonardo C. Mihalcea, Nicolas Perrin, Finiteness of cominuscule quantum K -theory
  4. E. Ballico, On vector bundles whose general sections have all projectively equivalent zero-loci
  5. Joel Roberts, Some properties of double point schemes
  6. Nicolas Perrin, Elliptic curves on spinor varieties
  7. V. Navarro Aznar, Sur les multiplicités de Schubert locales des faisceaux algébriques cohérents
  8. Valentina Kiritchenko, Chern classes of reductive groups and an adjunction formula
  9. William A. Adkins, Weak normality and Lipschitz saturation for ordinary singularities
  10. Jean D'Almeida, Une involution sur un espace de modules de fibrés instantons

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.