Sets of -recurrence but not -recurrence
Nikos Frantzikinakis[1]; Emmanuel Lesigne[2]; Máté Wierdl[3]
- [1] Pennsylvania State University Department of Mathematics McAllister Building University Park, PA 16802 (USA)
- [2] Université François Rabelais de Tours Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083) Faculté des Sciences et Techniques Parc de Grandmont 37200 Tours (France)
- [3] University of Memphis Department of Mathematical Sciences Memphis, TN 38152 (USA)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 4, page 839-849
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFrantzikinakis, Nikos, Lesigne, Emmanuel, and Wierdl, Máté. "Sets of $k$-recurrence but not $(k+1)$-recurrence." Annales de l’institut Fourier 56.4 (2006): 839-849. <http://eudml.org/doc/10173>.
@article{Frantzikinakis2006,
abstract = {For every $k\in \mathbb\{N\}$, we produce a set of integers which is $k$-recurrent but not $(k+1)$-recurrent. This extends a result of Furstenberg who produced a $1$-recurrent set which is not $2$-recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.},
affiliation = {Pennsylvania State University Department of Mathematics McAllister Building University Park, PA 16802 (USA); Université François Rabelais de Tours Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083) Faculté des Sciences et Techniques Parc de Grandmont 37200 Tours (France); University of Memphis Department of Mathematical Sciences Memphis, TN 38152 (USA)},
author = {Frantzikinakis, Nikos, Lesigne, Emmanuel, Wierdl, Máté},
journal = {Annales de l’institut Fourier},
keywords = {Ergodic theory; recurrence; multiple recurrence; combinatorial additive number theory; ergodic theory; sets of -recurrence; multiple recurrent sets},
language = {eng},
number = {4},
pages = {839-849},
publisher = {Association des Annales de l’institut Fourier},
title = {Sets of $k$-recurrence but not $(k+1)$-recurrence},
url = {http://eudml.org/doc/10173},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Frantzikinakis, Nikos
AU - Lesigne, Emmanuel
AU - Wierdl, Máté
TI - Sets of $k$-recurrence but not $(k+1)$-recurrence
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 4
SP - 839
EP - 849
AB - For every $k\in \mathbb{N}$, we produce a set of integers which is $k$-recurrent but not $(k+1)$-recurrent. This extends a result of Furstenberg who produced a $1$-recurrent set which is not $2$-recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.
LA - eng
KW - Ergodic theory; recurrence; multiple recurrence; combinatorial additive number theory; ergodic theory; sets of -recurrence; multiple recurrent sets
UR - http://eudml.org/doc/10173
ER -
References
top- V. Bergelson, Weakly mixing PET, Ergodic Theory Dynamical Systems 7 (1987), 337-349 Zbl0645.28012MR912373
- V. Bergelson, Ergodic Ramsey theory-an update, Ergodic Theroy of -actions (1996), 1-61, Cambridge University Press, Cambridge Zbl0846.05095MR1411215
- H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 71 (1977), 204-256 Zbl0347.28016MR498471
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, (1981), Princeton University Press, Princeton, N.J. Zbl0459.28023MR603625
- H. Furstenberg, Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1979), 275-291 Zbl0426.28014MR531279
- H. Furstenberg, Y. Katznelson, D. Ornstein, The ergodic theoretical proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 527-552 Zbl0523.28017MR670131
- B. Host, B. Kra, Nonconventional ergodic averages and nilmanifolds, Annals of Math 161 (2005), 397-488 Zbl1077.37002MR2150389
- Y. Katznelson, Chromatic numbers of Cayley graphs on and recurrence, Combinatorica 21 (2001), 211-219 Zbl0981.05038MR1832446
- Tamar Ziegler, Universal Characteristic Factors and Furstenberg Averages Zbl1198.37014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.