On Solvable Generalized Calabi-Yau Manifolds

Paolo de Bartolomeis[1]; Adriano Tomassini[2]

  • [1] Università di Firenze Dipartimento di Matematica Applicata G. Sansone Via S. Marta 3 50139 Firenze (Italy)
  • [2] Università di Parma Dipartimento di Matematica Viale G.P. Usberti 53/A 43100 Parma (Italy)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 5, page 1281-1296
  • ISSN: 0373-0956

Abstract

top
We give an example of a compact 6-dimensional non-Kähler symplectic manifold ( M , κ ) that satisfies the Hard Lefschetz Condition. Moreover, it is showed that ( M , κ ) is a special generalized Calabi-Yau manifold.

How to cite

top

de Bartolomeis, Paolo, and Tomassini, Adriano. "On Solvable Generalized Calabi-Yau Manifolds." Annales de l’institut Fourier 56.5 (2006): 1281-1296. <http://eudml.org/doc/10177>.

@article{deBartolomeis2006,
abstract = {We give an example of a compact 6-dimensional non-Kähler symplectic manifold $(M,\kappa )$ that satisfies the Hard Lefschetz Condition. Moreover, it is showed that $(M,\kappa )$ is a special generalized Calabi-Yau manifold.},
affiliation = {Università di Firenze Dipartimento di Matematica Applicata G. Sansone Via S. Marta 3 50139 Firenze (Italy); Università di Parma Dipartimento di Matematica Viale G.P. Usberti 53/A 43100 Parma (Italy)},
author = {de Bartolomeis, Paolo, Tomassini, Adriano},
journal = {Annales de l’institut Fourier},
keywords = {Symplectic manifolds; Calabi-Yau manifolds; symplectic manifolds; Calabi-Yau-manifolds},
language = {eng},
number = {5},
pages = {1281-1296},
publisher = {Association des Annales de l’institut Fourier},
title = {On Solvable Generalized Calabi-Yau Manifolds},
url = {http://eudml.org/doc/10177},
volume = {56},
year = {2006},
}

TY - JOUR
AU - de Bartolomeis, Paolo
AU - Tomassini, Adriano
TI - On Solvable Generalized Calabi-Yau Manifolds
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1281
EP - 1296
AB - We give an example of a compact 6-dimensional non-Kähler symplectic manifold $(M,\kappa )$ that satisfies the Hard Lefschetz Condition. Moreover, it is showed that $(M,\kappa )$ is a special generalized Calabi-Yau manifold.
LA - eng
KW - Symplectic manifolds; Calabi-Yau manifolds; symplectic manifolds; Calabi-Yau-manifolds
UR - http://eudml.org/doc/10177
ER -

References

top
  1. P. de Bartolomeis, Symplectic and Holomorphic Theory in Kähler Geometry, (2004) 
  2. P. de Bartolomeis, A. Tomassini, On the Maslov Index of Lagrangian Submanifolds of Generalized Calabi-Yau Manifolds Zbl1115.53053
  3. P. de Bartolomeis, A. Tomassini, On Formality of Some Symplectic Manifolds, Inter. Math. Res. Notic. 24 (2001), 1287-1314 Zbl1004.53068MR1866746
  4. C. Benson, C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518 Zbl0672.53036MR976592
  5. A. Blanchard, Sur le variétés analitiques complexes, Ann. Sci. Ecole Norm. Sup. 73 (1956), 157-202 Zbl0073.37503MR87184
  6. J. L. Brylinski, A Differential Complex for Poisson Manifolds, J. Diff. Geom. 28 (1988), 93-114 Zbl0634.58029MR950556
  7. P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real Homotopy Theory of Kähler Manifolds, Inventiones Math. 29 (1975), 245-274 Zbl0312.55011MR382702
  8. K. Hasegawa, A note on compact solvmanifolds with Kähler structures, Osaka J. of Math. 43 (2006), 131-135 Zbl1105.32017MR2222405
  9. O. Mathieu, Harmonic cohomology classes of symplectic manifolds, Comm. Math. Helvetici 70 (1995), 1-9 Zbl0831.58004MR1314938
  10. S. A. Merkulov, Formality of Canonical Symplectic Complexes and Frobenius Manifolds, Int. Math. Res. Not. 4 (1998), 727-733 Zbl0931.58002MR1637093
  11. I. Nakamura, Complex parallelisable manifolds and their small deformations, J. of Diff. Geom. 10 (1975), 85-112 Zbl0297.32019MR393580
  12. A. Silva, Spazi omogenei Kähleriani di gruppi di Lie complessi risolubili, Boll. U.M.I. 2 A (1983), 203-210 Zbl0539.32014
  13. D. Yan, Hodge Structure on Symplectic Manifolds, Adv. in Math. 120 (1996), 143-154 Zbl0872.58002MR1392276

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.