Hodge theory for twisted differentials
Daniele Angella; Hisashi Kasuya
Complex Manifolds (2014)
- Volume: 1, Issue: 1, page 64-85, electronic only
- ISSN: 2300-7443
Access Full Article
topAbstract
topHow to cite
topDaniele Angella, and Hisashi Kasuya. "Hodge theory for twisted differentials." Complex Manifolds 1.1 (2014): 64-85, electronic only. <http://eudml.org/doc/276960>.
@article{DanieleAngella2014,
abstract = {We study cohomologies and Hodge theory for complex manifolds with twisted differentials. In particular, we get another cohomological obstruction for manifolds in class C of Fujiki. We give a Hodgetheoretical proof of the characterization of solvmanifolds in class C of Fujiki, first stated by D. Arapura.},
author = {Daniele Angella, Hisashi Kasuya},
journal = {Complex Manifolds},
keywords = {twisted differential; local system; Dolbeault cohomology; Bott-Chern cohomology; Hodge decomposition; solvmanifolds; class C of Fujiki; complex manifolds with twisted differentials; Hodge theory; manifolds of class of Fujiki},
language = {eng},
number = {1},
pages = {64-85, electronic only},
title = {Hodge theory for twisted differentials},
url = {http://eudml.org/doc/276960},
volume = {1},
year = {2014},
}
TY - JOUR
AU - Daniele Angella
AU - Hisashi Kasuya
TI - Hodge theory for twisted differentials
JO - Complex Manifolds
PY - 2014
VL - 1
IS - 1
SP - 64
EP - 85, electronic only
AB - We study cohomologies and Hodge theory for complex manifolds with twisted differentials. In particular, we get another cohomological obstruction for manifolds in class C of Fujiki. We give a Hodgetheoretical proof of the characterization of solvmanifolds in class C of Fujiki, first stated by D. Arapura.
LA - eng
KW - twisted differential; local system; Dolbeault cohomology; Bott-Chern cohomology; Hodge decomposition; solvmanifolds; class C of Fujiki; complex manifolds with twisted differentials; Hodge theory; manifolds of class of Fujiki
UR - http://eudml.org/doc/276960
ER -
References
top- [1] A. Aeppli, On the cohomology structure of Stein manifolds, Proc. Conf. Complex Analysis (Minneapolis, Minn., 1964), Springer, Berlin, 1965, pp. 58–70.
- [2] D. Angella, The cohomologies of the Iwasawa manifold and of its small deformations, J. Geom. Anal. 23 (2013), no. 3, 1355– 1378. [WoS][Crossref] Zbl1278.32013
- [3] D. Angella, Cohomologies of certain orbifolds, J. Geom. Phys. 171 (2013), 117–126. Zbl1281.55008
- [4] D. Angella, H. Kasuya, Bott-Chern cohomology of solvmanifolds, arXiv:1212.5708v3
- [math.DG].
- [5] D. Angella, A. Tomassini, On the @@-Lemma and Bott-Chern cohomology, Invent. Math. 192 (2013), no. 1, 71–81. [WoS] Zbl1271.32011
- [6] D. Angella, A. Tomassini, Inequalities à la Frölicher and cohomological decompositions, to appear in J. Noncommut. Geom.. Zbl1325.32018
- [7] D. Arapura, Kähler solvmanifolds, Int. Math. Res. Not. 2004 (2004), no. 3, 131–137.
- [8] W. L. Baily, The decomposition theorem for V-manifolds, Amer. J. Math. 78 (1956), no. 4, 862–888. [Crossref] Zbl0173.22705
- [9] W. L. Baily, On the quotient of an analytic manifold by a group of analytic homeomorphisms, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), no. 9, 804–808. [Crossref] Zbl0056.16901
- [10] G. Bharali, I. Biswas, M. Mj, The Fujiki class and positive degree maps, arXiv:1312.5655v1 Zbl1320.32023
- [math.GT].
- [11] F. A. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), no. 1, 1–40. Zbl0988.32017
- [12] Ch. Benson, C. S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513–518. [Crossref] Zbl0672.53036
- [13] R. Bott, S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), no. 1, 71–112. Zbl0148.31906
- [14] S. Console, A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform. Groups 6 (2001), no. 2, 111–124. [Crossref] Zbl1028.58024
- [15] P. de Bartolomeis, A. Tomassini, On solvable generalized Calabi-Yaumanifolds, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 5, 1281–1296. Zbl1127.53065
- [16] P. Deligne, Ph. Griffiths, J. Morgan, D. P. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. [Crossref] Zbl0312.55011
- [17] A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641–644. [Crossref] Zbl0065.16502
- [18] A. Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), no. 3, 225–258. [Crossref] Zbl0367.32004
- [19] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), no. 1, 65–71. Zbl0691.53040
- [20] K. Hasegawa, A note on compact solvmanifolds with Kähler structures, Osaka J. Math. 43 (2006), no. 1, 131–135. Zbl1105.32017
- [21] H. Kasuya, Techniques of computations of Dolbeault cohomology of solvmanifolds, Math. Z. 273 (2013), no. 1-2, 437–447. [WoS] Zbl1261.22009
- [22] H. Kasuya, Hodge symmetry and decomposition on non-Kähler solvmanifolds, J. Geom. Phys. 76 (2014), 61–65. Zbl1279.22010
- [23] H. Kasuya, Flat bundles and Hyper-Hodge decomposition on solvmanifolds, arXiv:1309.4264v1 Zbl1327.53065
- [math.DG], To appear in Int. Math. Res. Not. IMRN.
- [24] K. Kodaira, Complex manifolds and deformation of complex structures, Translated from the 1981 Japanese original by Kazuo Akao, Reprint of the 1986 English edition, Classics in Mathematics, Springer-Verlag, Berlin, 2005. Zbl1058.32007
- [25] K. Kodaira, D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Annals of Math. (2) 71 (1960), no. 1, 43–76. Zbl0128.16902
- [26] B. G. Moˇıšezon, On n-dimensional compact complexmanifolds having n algebraically independent meromorphic functions. I, II, III, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), no. 1–2–3, 133–174, 345–386, 621–656. Translation in Am. Math. Soc., Transl., II. Ser. 63 (1967), 51–177.
- [27] I. Nakamura, Complex parallelisable manifolds and their small deformations, J. Differ. Geom. 10 (1975), no. 1, 85–112. Zbl0297.32019
- [28] L. Ornea, M. Verbitsky, Morse-Novikov cohomology of locally conformally Kählermanifolds, J. Geom. Phys. 59 (2009), no. 3, 295–305. [Crossref] Zbl1161.57015
- [29] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), no. 6, 359–363. [Crossref] Zbl0074.18103
- [30] M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528v1
- [math.AG].
- [31] C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. No. 75 (1992), 5–95. Zbl0814.32003
- [32] C. Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, Cambridge, 2002.
- [33] R. O. Wells, Jr., Comparison of de Rham and Dolbeault cohomology for proper surjectivemappings, Pacific J.Math. 53 (1974), no. 1, 281–300. Zbl0261.32005
- [34] R O., Wells, Jr., Differential analysis on complex manifolds, Third edition,With a new appendix by Oscar Garcia-Prada, Graduate Texts in Mathematics, 65, Springer, New York, 2008.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.