Orthogonal bundles on curves and theta functions

Arnaud Beauville[1]

  • [1] Université de Nice Laboratoire J.A. Dieudonné Parc Valrose 06108 Nice Cedex 2 (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 5, page 1405-1418
  • ISSN: 0373-0956

Abstract

top
Let be the moduli space of principal SO r -bundles on a curve C , and the determinant bundle on . We define an isomorphism of H 0 ( , ) onto the dual of the space of r -th order theta functions on the Jacobian of C . This isomorphism identifies the rational map | | * defined by the linear system | | with the map | r Θ | which associates to a quadratic bundle ( E , q ) the theta divisor Θ E . The two components + and - of are mapped into the subspaces of even and odd theta functions respectively. Finally we discuss the analogous question for Sp 2 r -bundles.

How to cite

top

Beauville, Arnaud. "Orthogonal bundles on curves and theta functions." Annales de l’institut Fourier 56.5 (2006): 1405-1418. <http://eudml.org/doc/10180>.

@article{Beauville2006,
abstract = {Let $\mathcal\{M\}$ be the moduli space of principal $\mathrm\{SO\}_r$-bundles on a curve $C$, and $\mathcal\{L\}$ the determinant bundle on $\mathcal\{M\}$. We define an isomorphism of $H^0(\mathcal\{ M\},\mathcal\{L\})$ onto the dual of the space of $r$-th order theta functions on the Jacobian of $C$. This isomorphism identifies the rational map $\mathcal\{M\}\dasharrow|\mathcal\{L\}|^*$ defined by the linear system $|\mathcal\{L\}|$ with the map $\mathcal\{M\}\dasharrow|r \Theta |$ which associates to a quadratic bundle $(E,q)$ the theta divisor $\Theta _E$. The two components $\mathcal\{M\}^+$ and $\mathcal\{M\}^-$ of $\mathcal\{ M\}$ are mapped into the subspaces of even and odd theta functions respectively. Finally we discuss the analogous question for $\mathrm\{Sp\}_\{2r\}$-bundles.},
affiliation = {Université de Nice Laboratoire J.A. Dieudonné Parc Valrose 06108 Nice Cedex 2 (France)},
author = {Beauville, Arnaud},
journal = {Annales de l’institut Fourier},
keywords = {Principal bundles; orthogonal bundles; symplectic bundles; theta divisors; generalized theta functions; Verlinde formula; strange duality; vector bundles on curves; determinant bundle; moduli spaces},
language = {eng},
number = {5},
pages = {1405-1418},
publisher = {Association des Annales de l’institut Fourier},
title = {Orthogonal bundles on curves and theta functions},
url = {http://eudml.org/doc/10180},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Beauville, Arnaud
TI - Orthogonal bundles on curves and theta functions
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1405
EP - 1418
AB - Let $\mathcal{M}$ be the moduli space of principal $\mathrm{SO}_r$-bundles on a curve $C$, and $\mathcal{L}$ the determinant bundle on $\mathcal{M}$. We define an isomorphism of $H^0(\mathcal{ M},\mathcal{L})$ onto the dual of the space of $r$-th order theta functions on the Jacobian of $C$. This isomorphism identifies the rational map $\mathcal{M}\dasharrow|\mathcal{L}|^*$ defined by the linear system $|\mathcal{L}|$ with the map $\mathcal{M}\dasharrow|r \Theta |$ which associates to a quadratic bundle $(E,q)$ the theta divisor $\Theta _E$. The two components $\mathcal{M}^+$ and $\mathcal{M}^-$ of $\mathcal{ M}$ are mapped into the subspaces of even and odd theta functions respectively. Finally we discuss the analogous question for $\mathrm{Sp}_{2r}$-bundles.
LA - eng
KW - Principal bundles; orthogonal bundles; symplectic bundles; theta divisors; generalized theta functions; Verlinde formula; strange duality; vector bundles on curves; determinant bundle; moduli spaces
UR - http://eudml.org/doc/10180
ER -

References

top
  1. A. Alexeev, E. Meinrenken, C. Woodward, Formulas of Verlinde type for non-simply connected groups MR1959587
  2. A. Beauville, Vector bundles on curves and theta functions Zbl1115.14025
  3. A. Beauville, Fibrés de rang 2 sur les courbes, fibré déterminant et fonctions thêta II, Bull. Soc. Math. France 119 (1991), 259-291 Zbl0756.14017MR1125667
  4. A. Beauville, Conformal blocks, Fusion rings and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) 9 (1996), 75-96 Zbl0848.17024MR1360497
  5. A. Beauville, Y. Laszlo, C. Sorger, The Picard group of the moduli of G -bundles on a curve, Compositio Math. 112 (1998), 183-216 Zbl0976.14024MR1626025
  6. A. Beauville, M.S. Narasimhan, S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169-179 Zbl0666.14015MR998478
  7. N. Bourbaki, Groupes et algèbres de Lie. Chap. VI, (1968), Hermann, Paris Zbl0483.22001MR240238
  8. J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), 53-94 Zbl0689.14012MR999313
  9. E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Translations (II) 6 (1957), 111-244 Zbl0077.03404
  10. S. Kumar, M.S. Narasimhan, Picard group of the moduli spaces of G -bundles, Math. Ann. 308 (1997), 155-173 Zbl0884.14004MR1446205
  11. Y. Laszlo, À propos de l’espace des modules de fibrés de rang 2 sur une courbe, Math. Ann. 299 (1994), 597-608 Zbl0846.14011MR1286886
  12. Y. Laszlo, C. Sorger, The line bundles on the moduli of parabolic G -bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), 499-525 Zbl0918.14004MR1456243
  13. D. Mumford, On the equations defining abelian varieties, I, Invent. Math. 1 (1966), 287-354 Zbl0219.14024MR204427
  14. D. Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) (1970), 29-100, Edizioni Cremonese, Rome Zbl0198.25801MR282975
  15. W. Oxbury, S. Wilson, Reciprocity laws in the Verlinde formulae for the classical groups, Trans. Amer. Math. Soc. 348 (1996), 2689-2710 Zbl0902.14031MR1340183
  16. S. Ramanan, Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci. Math. Sci. 90 (1981), 151-166 Zbl0512.14018MR653952
  17. J.-P. Serre, Revêtements à ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 547-552 Zbl0742.14030MR1078120
  18. C. Sorger, On moduli of G -bundles of a curve for exceptional G , Ann. Sci. École Norm. Sup. (4) 32 (1999), 127-133 Zbl0969.14016MR1670528

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.