Orthogonal bundles on curves and theta functions
- [1] Université de Nice Laboratoire J.A. Dieudonné Parc Valrose 06108 Nice Cedex 2 (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 5, page 1405-1418
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBeauville, Arnaud. "Orthogonal bundles on curves and theta functions." Annales de l’institut Fourier 56.5 (2006): 1405-1418. <http://eudml.org/doc/10180>.
@article{Beauville2006,
abstract = {Let $\mathcal\{M\}$ be the moduli space of principal $\mathrm\{SO\}_r$-bundles on a curve $C$, and $\mathcal\{L\}$ the determinant bundle on $\mathcal\{M\}$. We define an isomorphism of $H^0(\mathcal\{ M\},\mathcal\{L\})$ onto the dual of the space of $r$-th order theta functions on the Jacobian of $C$. This isomorphism identifies the rational map $\mathcal\{M\}\dasharrow|\mathcal\{L\}|^*$ defined by the linear system $|\mathcal\{L\}|$ with the map $\mathcal\{M\}\dasharrow|r \Theta |$ which associates to a quadratic bundle $(E,q)$ the theta divisor $\Theta _E$. The two components $\mathcal\{M\}^+$ and $\mathcal\{M\}^-$ of $\mathcal\{ M\}$ are mapped into the subspaces of even and odd theta functions respectively. Finally we discuss the analogous question for $\mathrm\{Sp\}_\{2r\}$-bundles.},
affiliation = {Université de Nice Laboratoire J.A. Dieudonné Parc Valrose 06108 Nice Cedex 2 (France)},
author = {Beauville, Arnaud},
journal = {Annales de l’institut Fourier},
keywords = {Principal bundles; orthogonal bundles; symplectic bundles; theta divisors; generalized theta functions; Verlinde formula; strange duality; vector bundles on curves; determinant bundle; moduli spaces},
language = {eng},
number = {5},
pages = {1405-1418},
publisher = {Association des Annales de l’institut Fourier},
title = {Orthogonal bundles on curves and theta functions},
url = {http://eudml.org/doc/10180},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Beauville, Arnaud
TI - Orthogonal bundles on curves and theta functions
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1405
EP - 1418
AB - Let $\mathcal{M}$ be the moduli space of principal $\mathrm{SO}_r$-bundles on a curve $C$, and $\mathcal{L}$ the determinant bundle on $\mathcal{M}$. We define an isomorphism of $H^0(\mathcal{ M},\mathcal{L})$ onto the dual of the space of $r$-th order theta functions on the Jacobian of $C$. This isomorphism identifies the rational map $\mathcal{M}\dasharrow|\mathcal{L}|^*$ defined by the linear system $|\mathcal{L}|$ with the map $\mathcal{M}\dasharrow|r \Theta |$ which associates to a quadratic bundle $(E,q)$ the theta divisor $\Theta _E$. The two components $\mathcal{M}^+$ and $\mathcal{M}^-$ of $\mathcal{ M}$ are mapped into the subspaces of even and odd theta functions respectively. Finally we discuss the analogous question for $\mathrm{Sp}_{2r}$-bundles.
LA - eng
KW - Principal bundles; orthogonal bundles; symplectic bundles; theta divisors; generalized theta functions; Verlinde formula; strange duality; vector bundles on curves; determinant bundle; moduli spaces
UR - http://eudml.org/doc/10180
ER -
References
top- A. Alexeev, E. Meinrenken, C. Woodward, Formulas of Verlinde type for non-simply connected groups MR1959587
- A. Beauville, Vector bundles on curves and theta functions Zbl1115.14025
- A. Beauville, Fibrés de rang sur les courbes, fibré déterminant et fonctions thêta II, Bull. Soc. Math. France 119 (1991), 259-291 Zbl0756.14017MR1125667
- A. Beauville, Conformal blocks, Fusion rings and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) 9 (1996), 75-96 Zbl0848.17024MR1360497
- A. Beauville, Y. Laszlo, C. Sorger, The Picard group of the moduli of -bundles on a curve, Compositio Math. 112 (1998), 183-216 Zbl0976.14024MR1626025
- A. Beauville, M.S. Narasimhan, S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169-179 Zbl0666.14015MR998478
- N. Bourbaki, Groupes et algèbres de Lie. Chap. VI, (1968), Hermann, Paris Zbl0483.22001MR240238
- J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), 53-94 Zbl0689.14012MR999313
- E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Translations (II) 6 (1957), 111-244 Zbl0077.03404
- S. Kumar, M.S. Narasimhan, Picard group of the moduli spaces of -bundles, Math. Ann. 308 (1997), 155-173 Zbl0884.14004MR1446205
- Y. Laszlo, À propos de l’espace des modules de fibrés de rang 2 sur une courbe, Math. Ann. 299 (1994), 597-608 Zbl0846.14011MR1286886
- Y. Laszlo, C. Sorger, The line bundles on the moduli of parabolic -bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), 499-525 Zbl0918.14004MR1456243
- D. Mumford, On the equations defining abelian varieties, I, Invent. Math. 1 (1966), 287-354 Zbl0219.14024MR204427
- D. Mumford, Varieties defined by quadratic equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) (1970), 29-100, Edizioni Cremonese, Rome Zbl0198.25801MR282975
- W. Oxbury, S. Wilson, Reciprocity laws in the Verlinde formulae for the classical groups, Trans. Amer. Math. Soc. 348 (1996), 2689-2710 Zbl0902.14031MR1340183
- S. Ramanan, Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci. Math. Sci. 90 (1981), 151-166 Zbl0512.14018MR653952
- J.-P. Serre, Revêtements à ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 547-552 Zbl0742.14030MR1078120
- C. Sorger, On moduli of -bundles of a curve for exceptional , Ann. Sci. École Norm. Sup. (4) 32 (1999), 127-133 Zbl0969.14016MR1670528
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.