On moduli of -bundles of a curve for exceptional
Annales scientifiques de l'École Normale Supérieure (1999)
- Volume: 32, Issue: 1, page 127-133
- ISSN: 0012-9593
Access Full Article
topHow to cite
topReferences
top- [B-L-S] A. BEAUVILLE, Y. LASZLO and C. SORGER, The Picard group of the Moduli of G-bundles on a Curve, Compositio Math., 112, 1998, pp. 183-216. Zbl0976.14024MR99i:14011
- [D-N] J.-M. DREZET and M. S. NARASIMHAN, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math., 97(1), 1989, pp. 53-94. Zbl0689.14012MR90d:14008
- [D] E. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, AMS Tranl. Ser. II, 6, 1957, pp. 111-244. Zbl0077.03404
- [F] G. FALTINGS, A proof for the Verlinde formula, J. Algebraic Geom., 3(2), 1994, pp. 347-374. Zbl0809.14009MR95j:14013
- [L-S] Y. LASZLO and C. SORGE, The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4), 30(4), 1997, pp. 499-525. Zbl0918.14004MR98f:14007
- [Sl] R. SLANSKY, Group theory for unified model building, Phys. Rep., 79(1), 1981, pp. 1-128. MR83d:81112
- [S] C. SORGER, La formule de Verlinde. Astérisque, 237, Exp. No. 794, 3, 1996, pp. 87-114. Séminaire Bourbaki, Vol. 1994/1995. Zbl0878.17024
- [T] C. TELEMAN, Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve, Preprint.
- [T-U-Y] A. TSUCHIYA, K. UENO and Y. YAMADA, Conformal field theory on universal family of stable curves with gauge symmetries, Adv. Studies in Pure Math., 19, 1989, pp. 459-566. Zbl0696.17010MR92a:81191