Embeddings of a family of Danielewski hypersurfaces and certain -actions on
Lucy Moser-Jauslin[1]; Pierre-Marie Poloni[1]
- [1] Université de Bourgogne Institut de Mathématiques de Bourgogne CNRS–UMR 5584 9, avenue Alain Savary B.P. 47870 21078 Dijon (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 5, page 1567-1581
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMoser-Jauslin, Lucy, and Poloni, Pierre-Marie. "Embeddings of a family of Danielewski hypersurfaces and certain $\mathbf{C}^+$-actions on $\mathbf{C}^3$." Annales de l’institut Fourier 56.5 (2006): 1567-1581. <http://eudml.org/doc/10184>.
@article{Moser2006,
abstract = {We consider the family of polynomials in $\mathbf\{C\}[x,y,z]$ of the form $x^2y-z^2-xq(x,z)$. Two such polynomials $P_1$ and $P_2$ are equivalent if there is an automorphism $\varphi ^*$ of $\mathbf\{C\}[x,y,z]$ such that $\varphi ^*(P_1)=P_2$. We give a complete classification of the equivalence classes of these polynomials in the algebraic and analytic category. As a consequence, we find the following results. There are explicit examples of inequivalent polynomials $P_1$ and $P_2$ such that the zero set of $P_1+c$ is isomorphic to the zero set of $P_2+c$ for all $c\in \mathbf\{C\}$. There exist polynomials which are algebraically inequivalent but analytically equivalent. There exist polynomials which are algebraically inequivalent but when considered as polynomials in $\mathbf\{C\}[x,y,z,w]$ become equivalent. This last result answers a problem posed in [7]. Finally, we get a complete classification of $\mathbf\{C\}^+$-actions on $\mathbf\{C\}^3$ which are defined by a triangular locally nilpotent derivation of the form $x^2\partial /\partial z+(2z+xq(x,z))\partial /\partial y$.},
affiliation = {Université de Bourgogne Institut de Mathématiques de Bourgogne CNRS–UMR 5584 9, avenue Alain Savary B.P. 47870 21078 Dijon (France); Université de Bourgogne Institut de Mathématiques de Bourgogne CNRS–UMR 5584 9, avenue Alain Savary B.P. 47870 21078 Dijon (France)},
author = {Moser-Jauslin, Lucy, Poloni, Pierre-Marie},
journal = {Annales de l’institut Fourier},
keywords = {equivalence of polynomials; stable equivalence; algebraic embeddings; Danielewski surfaces},
language = {eng},
number = {5},
pages = {1567-1581},
publisher = {Association des Annales de l’institut Fourier},
title = {Embeddings of a family of Danielewski hypersurfaces and certain $\mathbf\{C\}^+$-actions on $\mathbf\{C\}^3$},
url = {http://eudml.org/doc/10184},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Moser-Jauslin, Lucy
AU - Poloni, Pierre-Marie
TI - Embeddings of a family of Danielewski hypersurfaces and certain $\mathbf{C}^+$-actions on $\mathbf{C}^3$
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 5
SP - 1567
EP - 1581
AB - We consider the family of polynomials in $\mathbf{C}[x,y,z]$ of the form $x^2y-z^2-xq(x,z)$. Two such polynomials $P_1$ and $P_2$ are equivalent if there is an automorphism $\varphi ^*$ of $\mathbf{C}[x,y,z]$ such that $\varphi ^*(P_1)=P_2$. We give a complete classification of the equivalence classes of these polynomials in the algebraic and analytic category. As a consequence, we find the following results. There are explicit examples of inequivalent polynomials $P_1$ and $P_2$ such that the zero set of $P_1+c$ is isomorphic to the zero set of $P_2+c$ for all $c\in \mathbf{C}$. There exist polynomials which are algebraically inequivalent but analytically equivalent. There exist polynomials which are algebraically inequivalent but when considered as polynomials in $\mathbf{C}[x,y,z,w]$ become equivalent. This last result answers a problem posed in [7]. Finally, we get a complete classification of $\mathbf{C}^+$-actions on $\mathbf{C}^3$ which are defined by a triangular locally nilpotent derivation of the form $x^2\partial /\partial z+(2z+xq(x,z))\partial /\partial y$.
LA - eng
KW - equivalence of polynomials; stable equivalence; algebraic embeddings; Danielewski surfaces
UR - http://eudml.org/doc/10184
ER -
References
top- W. Danielewski, On the cancellation problem and automorphism groups of affine algebraic varieties, (1989)
- A. Dubouloz, Sur une classe de schémas avec actions de fibrés en droites, (2004), Grenoble
- A. Dubouloz, Danielewski-Fieseler surfaces, Transformation Groups 10 (Juin 2005), 139-162 Zbl1105.14083MR2195597
- K.-H. Fieseler, On complex affine surfaces with -action, Comment. Math. Helvetici 69 (1994), 5-27 Zbl0806.14033MR1259603
- G. Freudenburg, L. Moser-Jauslin, Embeddings of Danielewski surfaces, Math. Z. 245 (2003), 823-834 Zbl1074.14054MR2020713
- L. Makar-Limanov, On the group of automorphisms of a surface , Israel J. Math. 121 (2001), 113-123 Zbl0980.14030MR1818396
- L. Makar-Limanov, P. van Rossum, V. Shpilrain, J.-T. Yu, The stable equivalence and cancellation problems, Comment. Math. Helv. 79 (2004), 341-349 Zbl1063.14077MR2059436
- V. Shpilrain, J.-T. Yu, Embeddings of hypersurfaces in affine spaces, J. Alg. 239 (2001), 161-173 Zbl1064.14076MR1827879
- V. Shpilrain, J.-T. Yu, Affine varieties with equivalent cylinders, J. Alg. 251 (2002), 295-307 Zbl1067.14064MR1900285
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.