Loading [MathJax]/extensions/MathZoom.js
We consider the family of polynomials in of the form . Two such polynomials and are equivalent if there is an automorphism of such that . We give a complete classification of the equivalence classes of these polynomials in the algebraic and analytic category. As a consequence, we find the following results. There are explicit examples of inequivalent polynomials and such that the zero set of is isomorphic to the zero set of for all . There exist polynomials which are algebraically...
We consider singular -acyclic surfaces with smooth locus of non-general type. We prove that if the singularities are topologically rational then the smooth locus is - or -ruled or the surface is up to isomorphism one of two exceptional surfaces of Kodaira dimension zero. For both exceptional surfaces the Kodaira dimension of the smooth locus is zero and the singular locus consists of a unique point of type and respectively.
We present an example which confirms the assertion of the title.
An interesting and open question is the classification of affine algebraic plane curves. Abhyankar and Moh (1977) completely described the possible links at infinity for those curves where the link has just one component, a knot. Such curves are said to have one place at infinity. The Abhyankar-Moh result has been of great assistance in classifying those polynomials which define a connected curve with one place at infinity. This paper provides a new proof of the Abhyankar-Moh result which is then...
Currently displaying 1 –
5 of
5