Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains

Bo Berndtsson[1]

  • [1] Chalmers University of Technology and the University of Göteborg Department of Mathematics 412 96 Göteborg (Sweden)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 6, page 1633-1662
  • ISSN: 0373-0956

Abstract

top
Let D be a pseudoconvex domain in t k × z n and let φ be a plurisubharmonic function in D . For each t we consider the n -dimensional slice of D , D t = { z ; ( t , z ) D } , let φ t be the restriction of φ to D t and denote by K t ( z , ζ ) the Bergman kernel of D t with the weight function φ t . Generalizing a recent result of Maitani and Yamaguchi (corresponding to n = 1 and φ = 0 ) we prove that log K t ( z , z ) is a plurisubharmonic function in D . We also generalize an earlier results of Yamaguchi concerning the Robin function and discuss similar results in the setting of  n .

How to cite

top

Berndtsson, Bo. "Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains." Annales de l’institut Fourier 56.6 (2006): 1633-1662. <http://eudml.org/doc/10187>.

@article{Berndtsson2006,
abstract = {Let $D$ be a pseudoconvex domain in $\mathbb\{C\}^k_t\times \mathbb\{C\}^n_z$ and let $\phi $ be a plurisubharmonic function in $D$. For each $t$ we consider the $n$-dimensional slice of $D$, $D_t=\lbrace z; (t,z)\in D\rbrace $, let $\phi ^t$ be the restriction of $\phi $ to $D_t$ and denote by $K_t(z,\zeta )$ the Bergman kernel of $D_t$ with the weight function $\phi ^t$. Generalizing a recent result of Maitani and Yamaguchi (corresponding to $n=1$ and $\phi =0$) we prove that $\log K_t(z,z)$ is a plurisubharmonic function in $D$. We also generalize an earlier results of Yamaguchi concerning the Robin function and discuss similar results in the setting of $\mathbb\{R\}^n$.},
affiliation = {Chalmers University of Technology and the University of Göteborg Department of Mathematics 412 96 Göteborg (Sweden)},
author = {Berndtsson, Bo},
journal = {Annales de l’institut Fourier},
keywords = {Bergman spaces; plurisubharmonic function; $\bar\{\partial \}$-equation; Lelong number},
language = {eng},
number = {6},
pages = {1633-1662},
publisher = {Association des Annales de l’institut Fourier},
title = {Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains},
url = {http://eudml.org/doc/10187},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Berndtsson, Bo
TI - Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1633
EP - 1662
AB - Let $D$ be a pseudoconvex domain in $\mathbb{C}^k_t\times \mathbb{C}^n_z$ and let $\phi $ be a plurisubharmonic function in $D$. For each $t$ we consider the $n$-dimensional slice of $D$, $D_t=\lbrace z; (t,z)\in D\rbrace $, let $\phi ^t$ be the restriction of $\phi $ to $D_t$ and denote by $K_t(z,\zeta )$ the Bergman kernel of $D_t$ with the weight function $\phi ^t$. Generalizing a recent result of Maitani and Yamaguchi (corresponding to $n=1$ and $\phi =0$) we prove that $\log K_t(z,z)$ is a plurisubharmonic function in $D$. We also generalize an earlier results of Yamaguchi concerning the Robin function and discuss similar results in the setting of $\mathbb{R}^n$.
LA - eng
KW - Bergman spaces; plurisubharmonic function; $\bar{\partial }$-equation; Lelong number
UR - http://eudml.org/doc/10187
ER -

References

top
  1. K. Ball, F. Barthe, A. Naor, Entropy jumps in the presence of a spectral gap, Duke Math. J. 119 (2003), 41-63 Zbl1036.94003MR1991646
  2. B. Berndtsson, Prekopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions, Math. Ann. 312 (1998), 785-792 Zbl0938.32021MR1660227
  3. H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22 (1976), 366-389 Zbl0334.26009MR450480
  4. J. Bruna, J. Burgués, Holomorphic approximation and estimates for the ¯ -equation on strictly pseudoconvex nonsmooth domains, Duke Math. J. 55 (1987), 539-596 Zbl0645.32009MR904941
  5. P. Cardaliaguet, R. Tahraoui, On the strict concavity of the harmonic radius in dimension N 3 , J. Math. Pures Appl. (9) 81 (2002), 223-240 Zbl1027.31003MR1894062
  6. D. Cordero-Erausquin, Santaló’s inequality on n by complex interpolation, C. R. Math. Acad. Sci. Paris 334 (2002), 767-772 Zbl1002.31003MR1905037
  7. D. Cordero-Erausquin, On Berndtsson’s generalization of Prekopa’s theorem, Math. Z. 249 (2005), 401-410 Zbl1079.32020MR2115450
  8. J.-P. Demailly, Estimations L 2 pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), 457-511 Zbl0507.32021MR690650
  9. L. Hörmander, L 2 -estimates and existence theorems for the ¯ -operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
  10. C. O. Kiselman, The partial Legendre transformation for plurisubharmonic functions, Invent. Math. 49 (1978), 137-148 Zbl0378.32010MR511187
  11. C. O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France. 107 (1979), 295-304 Zbl0416.32007MR544525
  12. C. O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math. 60 (1994), 173-197 Zbl0827.32016MR1301603
  13. N. Levenberg, H. Yamaguchi, Robin functions for complex manifolds and applications, (2004) Zbl0953.32018
  14. F. Maitani, H. Yamaguchi, Variation of Bergman metrics on Riemann surfaces, Math. Annal. 330 (2004), 477-489 Zbl1077.32006MR2099190
  15. A. Prekopa, On logarithmic concave measures and functions, Acad. Sci. Math. (Szeged) 34 (1973), 335-343 Zbl0264.90038MR404557
  16. Y.-T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53-156 Zbl0289.32003MR352516
  17. H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans  n , Bull. Soc. Math. France 100 (1972), 353-408 Zbl0246.32009MR352517
  18. H. Yamaguchi, Variations of pseudoconvex domains over  n , Michigan Math. J. 36 (1989), 415-457 Zbl0692.31004MR1027077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.