Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains
- [1] Chalmers University of Technology and the University of Göteborg Department of Mathematics 412 96 Göteborg (Sweden)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 6, page 1633-1662
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBerndtsson, Bo. "Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains." Annales de l’institut Fourier 56.6 (2006): 1633-1662. <http://eudml.org/doc/10187>.
@article{Berndtsson2006,
abstract = {Let $D$ be a pseudoconvex domain in $\mathbb\{C\}^k_t\times \mathbb\{C\}^n_z$ and let $\phi $ be a plurisubharmonic function in $D$. For each $t$ we consider the $n$-dimensional slice of $D$, $D_t=\lbrace z; (t,z)\in D\rbrace $, let $\phi ^t$ be the restriction of $\phi $ to $D_t$ and denote by $K_t(z,\zeta )$ the Bergman kernel of $D_t$ with the weight function $\phi ^t$. Generalizing a recent result of Maitani and Yamaguchi (corresponding to $n=1$ and $\phi =0$) we prove that $\log K_t(z,z)$ is a plurisubharmonic function in $D$. We also generalize an earlier results of Yamaguchi concerning the Robin function and discuss similar results in the setting of $\mathbb\{R\}^n$.},
affiliation = {Chalmers University of Technology and the University of Göteborg Department of Mathematics 412 96 Göteborg (Sweden)},
author = {Berndtsson, Bo},
journal = {Annales de l’institut Fourier},
keywords = {Bergman spaces; plurisubharmonic function; $\bar\{\partial \}$-equation; Lelong number},
language = {eng},
number = {6},
pages = {1633-1662},
publisher = {Association des Annales de l’institut Fourier},
title = {Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains},
url = {http://eudml.org/doc/10187},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Berndtsson, Bo
TI - Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1633
EP - 1662
AB - Let $D$ be a pseudoconvex domain in $\mathbb{C}^k_t\times \mathbb{C}^n_z$ and let $\phi $ be a plurisubharmonic function in $D$. For each $t$ we consider the $n$-dimensional slice of $D$, $D_t=\lbrace z; (t,z)\in D\rbrace $, let $\phi ^t$ be the restriction of $\phi $ to $D_t$ and denote by $K_t(z,\zeta )$ the Bergman kernel of $D_t$ with the weight function $\phi ^t$. Generalizing a recent result of Maitani and Yamaguchi (corresponding to $n=1$ and $\phi =0$) we prove that $\log K_t(z,z)$ is a plurisubharmonic function in $D$. We also generalize an earlier results of Yamaguchi concerning the Robin function and discuss similar results in the setting of $\mathbb{R}^n$.
LA - eng
KW - Bergman spaces; plurisubharmonic function; $\bar{\partial }$-equation; Lelong number
UR - http://eudml.org/doc/10187
ER -
References
top- K. Ball, F. Barthe, A. Naor, Entropy jumps in the presence of a spectral gap, Duke Math. J. 119 (2003), 41-63 Zbl1036.94003MR1991646
- B. Berndtsson, Prekopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions, Math. Ann. 312 (1998), 785-792 Zbl0938.32021MR1660227
- H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22 (1976), 366-389 Zbl0334.26009MR450480
- J. Bruna, J. Burgués, Holomorphic approximation and estimates for the -equation on strictly pseudoconvex nonsmooth domains, Duke Math. J. 55 (1987), 539-596 Zbl0645.32009MR904941
- P. Cardaliaguet, R. Tahraoui, On the strict concavity of the harmonic radius in dimension , J. Math. Pures Appl. (9) 81 (2002), 223-240 Zbl1027.31003MR1894062
- D. Cordero-Erausquin, Santaló’s inequality on by complex interpolation, C. R. Math. Acad. Sci. Paris 334 (2002), 767-772 Zbl1002.31003MR1905037
- D. Cordero-Erausquin, On Berndtsson’s generalization of Prekopa’s theorem, Math. Z. 249 (2005), 401-410 Zbl1079.32020MR2115450
- J.-P. Demailly, Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), 457-511 Zbl0507.32021MR690650
- L. Hörmander, -estimates and existence theorems for the -operator, Acta Math. 113 (1965), 89-152 Zbl0158.11002MR179443
- C. O. Kiselman, The partial Legendre transformation for plurisubharmonic functions, Invent. Math. 49 (1978), 137-148 Zbl0378.32010MR511187
- C. O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France. 107 (1979), 295-304 Zbl0416.32007MR544525
- C. O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math. 60 (1994), 173-197 Zbl0827.32016MR1301603
- N. Levenberg, H. Yamaguchi, Robin functions for complex manifolds and applications, (2004) Zbl0953.32018
- F. Maitani, H. Yamaguchi, Variation of Bergman metrics on Riemann surfaces, Math. Annal. 330 (2004), 477-489 Zbl1077.32006MR2099190
- A. Prekopa, On logarithmic concave measures and functions, Acad. Sci. Math. (Szeged) 34 (1973), 335-343 Zbl0264.90038MR404557
- Y.-T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53-156 Zbl0289.32003MR352516
- H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans , Bull. Soc. Math. France 100 (1972), 353-408 Zbl0246.32009MR352517
- H. Yamaguchi, Variations of pseudoconvex domains over , Michigan Math. J. 36 (1989), 415-457 Zbl0692.31004MR1027077
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.