A Bochner-Martinelli formula for vector fields which satisfy the generalized Cauchy-Riemann equations
We give a new constructive proof of the composition rule for Taylor's functional calculus for commuting operators on a Banach space.
We introduce a new invariant Kähler metric on relatively compact domains in a complex manifold, which is the Bergman metric of the L² space of holomorphic sections of the pluricanonical bundle equipped with the Hermitian metric introduced by Narasimhan-Simha.
If H denotes a Hilbert space of analytic functions on a region Ω ⊆ Cd , then the weak product is defined by [...] We prove that if H is a first order holomorphic Besov Hilbert space on the unit ball of Cd , then the multiplier algebras of H and of H ⊙ H coincide.
A Bochner-Martinelli-Koppelman type integral formula on submanifolds of pseudoconvex domains in Cn is derived; the result gives, in particular, integral formulas on Stein manifolds.