A generalization of level-raising congruences for algebraic modular forms

Claus Mazanti Sorensen[1]

  • [1] California Institute of Technology Department of Mathematics 253-37 Caltech, Pasadena, CA 91125 (USA)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 6, page 1735-1766
  • ISSN: 0373-0956

Abstract

top
In this paper, we extend the results of Ribet and Taylor on level-raising for algebraic modular forms on the multiplicative group of a definite quaternion algebra over a totally real field F . We do this for automorphic representations of an arbitrary reductive group G over F , which is compact at infinity. In the special case where G is an inner form of GSp ( 4 ) over , we use this to produce congruences between Saito-Kurokawa forms and forms with a generic local component.

How to cite

top

Mazanti Sorensen, Claus. "A generalization of level-raising congruences for algebraic modular forms." Annales de l’institut Fourier 56.6 (2006): 1735-1766. <http://eudml.org/doc/10190>.

@article{MazantiSorensen2006,
abstract = {In this paper, we extend the results of Ribet and Taylor on level-raising for algebraic modular forms on the multiplicative group of a definite quaternion algebra over a totally real field $F$. We do this for automorphic representations of an arbitrary reductive group $G$ over $F$, which is compact at infinity. In the special case where $G$ is an inner form of $\{\rm GSp\}(4)$ over $\mathbb\{Q\}$, we use this to produce congruences between Saito-Kurokawa forms and forms with a generic local component.},
affiliation = {California Institute of Technology Department of Mathematics 253-37 Caltech, Pasadena, CA 91125 (USA)},
author = {Mazanti Sorensen, Claus},
journal = {Annales de l’institut Fourier},
keywords = {Level-raising; algebraic modular forms; level-raising},
language = {eng},
number = {6},
pages = {1735-1766},
publisher = {Association des Annales de l’institut Fourier},
title = {A generalization of level-raising congruences for algebraic modular forms},
url = {http://eudml.org/doc/10190},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Mazanti Sorensen, Claus
TI - A generalization of level-raising congruences for algebraic modular forms
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 6
SP - 1735
EP - 1766
AB - In this paper, we extend the results of Ribet and Taylor on level-raising for algebraic modular forms on the multiplicative group of a definite quaternion algebra over a totally real field $F$. We do this for automorphic representations of an arbitrary reductive group $G$ over $F$, which is compact at infinity. In the special case where $G$ is an inner form of ${\rm GSp}(4)$ over $\mathbb{Q}$, we use this to produce congruences between Saito-Kurokawa forms and forms with a generic local component.
LA - eng
KW - Level-raising; algebraic modular forms; level-raising
UR - http://eudml.org/doc/10190
ER -

References

top
  1. J. Bellaiche, Congruences endoscopiques et représentations galoisiennes, (2002) 
  2. J. N. Bernstein, Le &lt;&lt;centre&gt;&gt; de Bernstein, Representations of reductive groups over a local field (1984), 1-32, Hermann, Paris Zbl0599.22016MR771671
  3. C. Bushnell, Personal communication 
  4. Colin J. Bushnell, Representations of reductive p -adic groups: Localization of Hecke algebras and applications, J. London Math. Soc. (2) 63 (2001), 364-386 Zbl1017.22011MR1810135
  5. W. Casselman, Introduction to the theory of admissible representations of p -adic reductive groups, (1995) 
  6. L. Clozel, On Ribet’s level-raising theorem for U ( 3 ) , Amer. J. Math. 122 (2000), 1265-1287 Zbl1024.11027MR1797662
  7. Pierre Deligne, Jean-Pierre Serre, Formes modulaires de poids 1 , Ann. Sci. École Norm. Sup. (4) 7 (1974), 507-530 Zbl0321.10026MR379379
  8. Michael Harris, Richard Taylor, The geometry and cohomology of some simple Shimura varieties, 151 (2001), Princeton University Press, Princeton, NJ Zbl1036.11027MR1876802
  9. Stephen S. Kudla, The local Langlands correspondence: The non-Archimedean case, Motives (Seattle, WA, 1991) 55 (1994), 365-391, Amer. Math. Soc., Providence, RI Zbl0811.11072MR1265559
  10. Gérard Laumon, Sur la cohomologie à supports compacts des variétés de Shimura pour GSp ( 4 ) Q , Compositio Math. 105 (1997), 267-359 Zbl0877.11037MR1440724
  11. W. Mann, Local level-raising for GL n , (2001) 
  12. J. Parson, Level-raising congruences in the representation theory of reductive groups over local fields, (2003) 
  13. Kenneth A. Ribet, Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) (1984), 503-514, PWN, Warsaw Zbl0575.10024MR804706
  14. Paul Sally, Marko Tadić, Induced representations and classifications for GSp ( 2 , F ) and Sp ( 2 , F ) , Mém. Soc. Math. France (N.S.) (1993), 75-133 Zbl0784.22008MR1212952
  15. Ralf Schmidt, Iwahori-spherical representations of GSp ( 4 ) and Siegel modular forms of degree 2 with square-free level, J. Math. Soc. Japan 57 (2005), 259-293 Zbl1166.11325MR2114732
  16. J.-P. Serre, Two letters on quaternions and modular forms (mod p ), Israel J. Math. 95 (1996), 281-299 Zbl0870.11030MR1418297
  17. C. Skinner, E. Urban, Sur les déformations p -adiques de certaines représentations automorphes, (May 2004) 
  18. Richard Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265-280 Zbl0705.11031MR1016264
  19. Richard Taylor, Representations of Galois groups associated to Hilbert modular forms, Automorphic forms, Shimura varieties, and -functions, Vol. II (Ann Arbor, MI, 1988) 11 (1990), 323-336, Academic Press, Boston, MA Zbl0703.11026MR1044833
  20. R. Weissauer, Four dimensional Galois representations Zbl1097.11027MR2234860

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.